
AD-A259 224

AFIT/GCS/ENG/92D-24

DTIC
S ELECTE

JANI 31993I

C

FORMALIZING, VALIDATING, AND VERIFYING
REAL-TIME SYSTEM REQUIREMENTS

WITH REACTO AND VHDL

THESIS

Frank Charles Duane Young
Captain, USAF

AFIT/GCS/ENG/92D-24

93-00090

Approved for public release; distribution unlimited

: • ,•' , /i v 7,

AFIT/GCS/ENG/92D-24

FORMALIZING, VALIDATING, AND VERIFYING

REAL-TIME SYSTEM REQUIREMENTS

WITH REACTO AND VHDL

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Frank Charles Duane Young, B.S.C.S. Dr'c QZ7,,

Captain, USAF T.MCt 1

Ace~soa eOw I-

December 15, 1992 NTr gii

Ju.I J fJoat t CL_

I By.

Approved for public release; distribution unlimited D' -trlvt ion/
"A D-•t'hIlt.Y Codes

D Tv11 nndSorea
Dist Spec ial'

Preface

I dedicate this thesis to my wife Sharon and our children Lonnie, Andrew, Jonathan,

Rachel, and Michael. Without their loving support, I would have given up long ago. I

appreciate the wise counsel and guidance of my advisor, Major Kim Kanzaki, and my

committee members, Major Paul Bailor and Dr. Thomas Hartrum. I also wish to thank

Li-Mei Gilham of Kestrel Institute. Her professional and timely responses to my inquiries

about Reacto were the key to my success with this new and promising tool. I especially

want to thank Lieutenant Colonel Bill Hobart, my academic advisor, whose Barnabas-like

encouragement and prayerful support kept me on track when all seemed insurmountable.

Finally, thanks be to God, with whom all things are possible- even AFIT theses.

Frank Charles Duane Young

Table of Contents

Page

Preface ii

Table of Contents i.

List of Figures viii

List of Tables xi

Abstract xii

I. Introduction ... 1

1.1 Background 1

1.2 Problem Statement 6

1.3 Research Objectives 6

1.4 Scope of Effort 8

1.5 Equipment and Software 9

1.6 Order of Presentation 9

II. Literature Review 11

2.1 Requirements Specification Languages For Real-Time Systems 11

2.1.1 Specification of Concurrency 12

2.1.2 Specification of Timing Constraints 13

2.2 Example Requirements Specification Languages 16

2.2.1 PAISLey 16

2.2.2 STATEMATE 18

2.3 Douglass and Eickmeier 21

2.3.1 SADT 21

iii

Page

2.3.2 Refine 23

2.3.3 VHDL 24

2.3.4 Douglass and Eickmeier Conclusions 29

2.4 Reacto .. 30

2.4.1 Reacto Editor 30

2.4.2 Reacto Compiler 31

2.4.3 Reacto Simulator 32

2.4.4 Reacto States 32

2.4.5 Reacto Transitions 33

2.4.6 Reacto I/O 35

2.4.7 Reacto Summary 35

2.5 Summary 35

III. Improving Requirements Specification 37

3.1 Methodology 37

3.2 Supporting Activities 39

3.3 Example Problems- Introduction 41

3.3.1 A Cruise Control 41

3.3.2 A Lift Controller System 43

3.4 Summary 48

IV. Modeling Time and Applying Reacto 50

4.1 Modeling Timing Requirements in Reacto 50

4.1.1 Reacto Augmentations to Implement 50

4.1.2 Relay Augmentation Example 54

4.1.3 Reacto Augmentations to Consider 57

4.2 Applying Reacto 60

4.2.1 Build the abstract FSM 61

iv

Page

4.2.2 Specify FSM Behavior 62

4.2.3 Verify and Validate FSM 69

4.3 Reacto Test Cases 69

4.3.1 Cruise Control Test Cases 70

4.3.2 Lift Controller Test Cases 74

4.4 Reacto Specification Improvements 77

4.5 Conclusion 82

V. Reacto to VHDL Transformation 84

5.1 Preemptive Execution Model 86

5.2 Generating Declarations 87

5.3 Generating Setup and Cleanup Procedures 92

5.4 Generating VHDL Functions 95

5.5 Generating Assertion Procedures 98

5.6 Generating Transition Procedures 100

5.7 Generating the FSM Process Body 102

5.8 Automating The Transformation 104

5.9 Conclusion 106

VI. Applying VHDL 107

6.1 Driving the VHDL Simulation 107

6.1.1 Testbench Generation 107

6.1.2 Testbench Configuration 109

6.2 Increasing Simulation Power 110

6.3 Running the VHDL Simulator111

6.4 VHDL Test Cases 112

6.4.1 Cruise Control Test Cases 112

6.4.2 Lift Controller Test Cases 118

v

Page

6.5 VHDL Specification Improvements 119

6.5.1 Behavioral Improvements 119

6.5.2 Temporal Improvements 120

6.6 Conclusion 127

VII. Comparing Reacto and VHDL Results 129

7.1 Comparing Reacto and VHDL Activation Allowed Tests 130

7.2 Reacto Benefits and Limitations 132

7.3 VHDL Benefits and Limitations 134

7.4 Conclusion 136

VIII. Conclusions and Recommendations 138

8.1 Summary 138

8.2 Recommendations 140

8.2.1 Reacto Enhancements 140

8.2.2 VHDL Enhancements 141

8.3 Lessons Learned 142

8.3.1 Reacto 142

8.3.2 VHDL 143

Appendix A. Cruise Control Test Cases 145

A.1 Initialization Test 145

A.2 Activation Denied Test 145

A.3 Activation Allowed Test 146

A.4 Deactivation Test 146

A.5 Acceleration Test 146

A.6 Resume Test 147

A.7 Downhill Test 148

A.8 Uphill Test 148

vi

Page

A.9 Breaking During Activate Delay Test 148

A.10 Breaking During Activate Asserted Test 149

A.11 Breaking After Activate B4 Cruise Test 149

A.12 Resume During Breaking Test 149

A.13 Deactivate Overlaps Resume Test 150

Appendix B. Lift Controller Test Cases 151

B.1 Lift Test Cases 151

B.1.1 All Summons Test 151

B.1.2 All Destinations Test 151

B.1.3 Emergency Button Test 151

B.1.4 Mixed Destinations and Summons Test 151

B.1.5 Timeout Test 152

B.2 Schedule Lifts Test Cases 152

B.2.1 Off State Test 152

B.2.2 All Summons 1 Lift Test 152

B.2.3 Idle Schedule Test 152

B.2.4 All Summons Test 152

Appendix C. Reacto Input and Output 153

C.1 Input 153

C.2 Output 155

Bibliography 156

Vita 159

vii

List of Figures

Figure Page

1. Iterative Waterfall Life Cycle Model 1

2. Requirements Analysis Process 5

3. Formal Software Development Process 7

4. FSM Stimulus-Response Timing Constraint 15

5. FSM Response-Response Timing Constraint 15

6. Sample SADT Diagram 22

7. VHDL Full-Adder Entity Diagram 25

8. VHDL Full-Adder Entity Code 25

9. VHDL Full-Adder Architecture Body 26

10. VHDL Simulation Cycle 27

11. VHDL Integer Signal Assignment Example 27

12. Reacto and VHDL Validation Process 37

13. Cruise Control in the Environment 44

14. Lift Control in the Environment 47

15. Lift Controller Activities 48

16. Reacto Timing Constraint Assertion 52

17. Reacto Timer Sensitive Predicate 52

18. Reacto Wait Transition 53

19. Reacto Relay FSM 54

20. Reacto Relay Assertions, Predicates, and Actions 55

21. Relay Scenario Timing Diagram 55

22. Asynchronous Event 58

23. Reacto Asynchronous Event Solution 58

24. Reacto Cruise Control FSM States 61

25. Reacto Cruise Control FSM 62

viii

Figure Page

26. Reacto Cruise Control Timing Constraints 62

27. Reacto Lift Special Data Types 64

28. Reacto Cruise Control I/O 65

29. Reacto Cruise Control Get-Input Function Source Code 66

30. Reacto Cruise Control Off State Source Code 66

31. Reacto Cruise Control Startup Transition Source Code 67

32. Reacto Cruise Control Activation Allowed Input 71

33. Reacto Cruise Control Activation Allowed Output 73

34. Reacto Cruise Control Breaking During Activate Delay Test Output 75

35. Reacto Cruise Control FSM 77

36. Reacto Lift FSM 78

37. Reacto Schedule Lifts FSM 79

38. Reacto Lift Emergency Transition Predicate 80

39. Reacto Get-Cruise-Voltage Function 81

40. Reacto Status-Type Definitions 82

41. VHDL Cruise Control Entity Declaration 87

42. Declarations Example 89

43. Symbol Type Declaration Example 90

44. VHDL Lift State Declarations 90

45. VHDL Lift Process Declaration 91

46. Variable Transformation Example 92

47. VHDL Cruise Control Setup Procedure 93

48. VHDL Cruise Control Cleanup Procedure 94

49. VHDL Get-Cruise-Voltage Function 96

50. VHDL Min and Implies Functions 96

51. VHDL Implies Problem 97

52. Set Quantification Example 98

ix

Figure Page

53. Assertion Transformation Example 99

54. Reacto Cruise Control Startup Transition Source Code 101

55. VHDL Cruise Control Startup Transition Procedure 102

56. VHDL FSM Process Body 103

57. VHDL Strong Typing Example 106

58. VHDL Null Cruise-Test Entity 107

59. VHDL All Lift Instantiation 108

60. Lift Configuration 109

61. Motorized Lift SADT Diagram 110

62. VHDL Cruise Control Activation Allowed Input 113

63. VHDL Cruise Control Activation Allowed Output 114

64. VHDL Cruise Control Breaking During Activate Delay Test Output 116

65. Braking During Activate Asserted Test Timing Diagram 121

66. Fixed Braking During Activate Asserted Test Timing Diagram 123

67. Eickmeier's Methodology Cruise Control SADT Diagram 124

68. Reacto and VHDL Capabilities 129

69. Reacto Cruise Control Activation Allowed Test 130

70. VHDL Cruise Control Activation Allowed Test 131

x

List of Tables

Table Page

1. VHDL Signal Assignment Values 28

2. Cruise Control Timing Constraints 43

3. Lift Controller Timing Constraints 46

4. keacto to VHDL Mapping 85

5. Reacto Benefits and Limitations 136

6. VHDL Benefits and Limitations 136

xi

AFIT/GCS/ENG/92D-24

Abstract

We develop a methodology for formalizing, verifying, and validating the requirements

specification of real-time systems based on a graphical and formal hierarchical Finite State

Machine (FSM) language Reacto. We define a means to quantify time and express real-

time constraints in Reacto and a transformation from Reacto to the Very High Speed

Integrated Circuit (VHSIC) Hardware Description Language (VHDL). Reacto's high level

abstractions, graphical nature, and theorem prover produce efficient, accurate, and easily

understood specifications. We use VHDL's event driven simulation capability, concurrency,

and temporal operators to thoroughly examine temporal dependencies between the state

machine transitions, and to increase simulation power by simulating multiple communicat-

ing FSMs. We apply the methodology to two example problems, a cruise control, and a lift

(elevator) controller. We verify that the state machine specification is consistent and vali-

date the specification using executable simulations in both Reacto and VHDL. We evaluate

the methodology against criteria for real-time specification languages and conclude that

Reacto and VHDL complement each other well. Together, they abstract the real world

well, are clearly understood, verify that the specification and implementation are consis-

tent, are easy to modify, allow requirements tracing, and finally, support specification of

concurrency and timing constraints.

xii

FORMALIZING, VALIDATING, AND VERIFYING

REAL-TIME SYSTEM REQUIREMENTS

WITH REACTO AND VHDL

L Introduction

1.1 Background

Traditionally, we describe the software development process using the waterfall model

and diagrams similar to Figure 1. The boxes represent a series of activities connected

together by products (the arrows). The product of each activity is used by the next

activity. Figure 1 shows the iterative nature of this process, whereby each stage feeds back

SRequirements

Analysis

System and
Softwarea

Designt W f

Implement

and Unit
Test

I
system

Testing

S•" "itM ainte nan oe

Figure 1. Iterative Waterfall Life Cycle Model (35)

into the process further refining the products in each case. At each stage, the success of

an activity cannot exceed the quality of its input. Although it is theoretically possible

to produce a perfect product by iteratively refining the products many times, it is very

expensive. Therefore, it is important to produce a quality product from the each activity.

Generally, it is so much more expensive to fix errors discovered later in the process that we

can afford to expend a great deal of effort in the earlier stages and save time and money

in the long run. In fact, independent studies by GTE, TRW and IBM show that it costs

up to 200 times as much to fix errors in the maintenance phase of a system lifecycle as

it does during requirements analysis (9:24). In our research, we are focusing on the first

activity, "Requirements Analysis", in an attempt to improve the Requirements Analysis

process for real-time computer systems. A real-time or reactive system is a system which

must continuously react to external and internal stimuli (14:231). Examples of real-time

systems include automobiles and telephone switches, and example stimuli for these two

systems include control button and electronic sensor inputs.

Requirements analysis is examining a problem to understand what the user wants

or needs a system to do. It involves talking to people, discovering who they are, what

they want, and the constraints they want to impose on the system (9:41). For real-time

systems, these constraints include timing constraints on system behavior.

The product of the requirements analysis activity is a system requirements specifi-

cation (SRS). Generally, software engineers agree that an SRS is a complete description

of what a system will do without specifying how to accomplish it (9:17). The difference

between what and how is not easy to define, and it depends on the level of detail with

which we examine the problem. We refer the interested reader to Alan Davis' book for

a detailed discussion of what versus how in system specifications (9:15-19). For our pur-

poses, we attempt to specify what the external behavior of the system must be without

constraining the developers to any particular implementation of that system (how). This

is Davis' level 3 in the "what versus how" dilemma (9:18).

Ideally, an SRS correctly and completely describes the user's requirements for the

final product. Generally, an erroneous SRS describes behavior that is not correct, or not in

accordance with the user's desires. There are several categories of errors we might associate

with an SRS. We separate these errors into four categories, incorrect facts, omissions,

2

inconsistencies, and ambiguities. SRS's without these errors exhibit the following qualities

according to Davis.

A correct (contains no incorrect facts) SRS contains only requirements that represent

something required of the system to be built. We cannot define this category in general,

since it depends totally on the application at hand. For example, if the system must

respond to all button presses within 5 seconds and the SRS states that "the software shall

respond to all button presses within 10 seconds," the SRS is incorrect (9:184-185).

A complete (nothing is omitted) SRS possesses the following four qualities (9:188-

190). First, everything that the software is supposed to do is in the SRS. It is most difficult

to define or detect violations of SRS completeness. Violations are difficult to detect because

they imply that something is not in the SRS. How can specifiers find something that is

not present by examining what is present? Only those who own the problem to be solved

by the software can detect such an oversight or omission. Second, definitions of every

software response to all realizable input classes in all realizable classes of situations are

included. It is particularly important to specify the responses to both valid and invalid

inputs. This implies that for every system input included in the SRS, the SRS specifies

what the appropriate output is. Additionally, the appropriate output may not be just a

function of the input, it may also be a function of the current state of the system and the

temporal relationship of that input to other inputs and outputs. Third, it is a finished

document- e.g., all pages are numbered, all figures and tables are filled in. Fourth, no

sections are marked "To Be Determined (TBD) (9:190)."

In a consistent SRS, no subset of individual requirements stated therein conflict.

These conflicts show up in a number of ways (9:191):

Terms Conflict Two terms are used in different contexts to mean the same thing. For

example, using the terms "prompt" and "cue", to denote a message displayed by the

software to ask the user to enter some information, in different SRS sections violates

consistency.

3

Conflicting Characteristics Two parts of the SRS demand the product to exhibit con-

tradictory traits. For example, in one place, the SRS requires all inputs via menu,

and in another place, it specifies command language inputs.

Temporal Inconsistency Two parts of the SRS demand the product to obey contradic-

tory temporal behavior-e.g., one sentence in the SRS states that "System input A

will occur only while system input B is occurring." And another place in the SRS

states, "System input B may start 15 seconds after system input A finishes."

"An SRS is nonambiguous if and only if every requirement stated therein has only one

interpretation. Imagine that a sentence is extracted from an SRS, given to ten people who

are asked for their interpretation. If there is more than one such interpretation, then that

sentence is probably ambiguous... In particular, using natural language invites ambiguity

because natural language is inherently ambiguous.... (9:185)"

Incorrect facts, omissions, inconsistencies, and ambiguities that are not detected in

the initial specification are sometimes detected when the system is being developed, but

they are inevitably found after the system has been delivered. As mentioned before, the

longer errors go undetected the more expensive they are to fix. If the cost to fix one or

more errors is too great, the system may be thrown away or simply never used. In today's

Air Force, we cannot afford to throw important systems away or to spend money fixing

systems that don't work. We must insure that the complex real-time systems we need to

maintain our technological superiority are built efficiently and accurately. To do so, we

must be able to create accurate and practical SRSs for these real-time systems.

SRSs for real-time systems are different and usually more complex than those of

traditional SRS (e.g., an SRS for a database or accounting system). Harel states that

real-time system behavior is much more difficult to describe (14:232). A real-time system

specification must not only describe the relationship between inputs and outputs, but it

must also describe the relationship between inputs and outputs with respect to time. For

large problems, it has been especially difficult to write an SRS that is clear and understood

by humans and formal enough for computer analysis at the same time.

4

After we develop informal and formal SRSs we review them to determine if they

are accurate, complete, consistent and unambiguous. We use the terms validation and

verification to describe the processes we go through attempting to insure that a system

accomplishes its requirements.

Simply, validation is determining if we axe building (or have built) the correct prod-

uct (29:499). In general, validation is checking the product of each software development

process activity (each box in Figure 1) against the results of the previous activity to in-

sure the products are consistent. Since the SRS is the product of the first activity of the

software development process, validation of the SRS is checking the SRS to determine if it

accurately and completely describes what the user wants the system to do (the informal

specification). If each product is consistent with the product from the previous stage, then

the delivered system is be consistent with the SRS. Figure 2 depicts the Requirements

Analysis phase of the Waterfall model depicted earlier in Figure 1. Validation is also an

Infomal 0 Aalyss 10 SRSDevelopment
Requirements AProcess

[Validation-

Figure 2. Requirements Analysis Process

iterative process, repeatedly clarifying and analyzing the SRS against the informal require-

ments until both the user and the specifier are satisfied that the SRS accurately reflects

the real requirements. Ideally, there are no remaining incorrect facts, omissions, inconsis-

tencies, or ambiguities; realistically, informal requirements are a moving target, and the

best we can hope for is an accurate snapshot of the requirements. However, the better

the SRS, the cheaper the system, and the better the system meets the users requirements.

Therefore SRS validation is a good investment.

Simply, verification is determining if we are building (or have built) the product

correctly (29:499). Historically, the process of checking whether or not a software product

entering the maintenance activity meets the requirements is known as verification. Usually,

this involves testing the final software product against the SRS. In fact, we should write

SRS's specifically to support verification. Total verification requires an error free SRS,

i.e., a correct, complete, consistent, and nonambiguous SRS. Additionally, it requires an

SRS free of requirements equivalent to Turing's halting problem because it would take

an infinite amount of time to verify such requirements (9:191). Practically, we limit our

verification efforts according to what we perceive the important requirements are, and we

limit testing of difficult or intractable requirements to the time scheduled for testing.

We extend the traditional concept of verification to include the process of making

assertions about the system itself in the SRS and attempting to verify the fact that the SRS

does not violate those assertions. A heating system provides a convenient example. "Oil

valve is closed when the pilot light is out" is an assertion which the the heater controller

must fulfill. If we detect a contradiction in the heater controller SRS such that the oil

valve might be open under some condition while the pilot light is out, the assertion would

be false, and the SRS unverified. If however, we can prove that the oil valve is closed at

all times when the pilot light is out, then the assertion is verified.

1.2 Problem Statement

We will investigate the feasibility, benefits of and the problems associated with for-

malizing, validating and verifying real-time SRSs using Reacto and the Very High Speed

Integrated Circuit (VHSIC) Hardware Description Language (VHDL). Additionally, this

requires defining a mapping and translation from Reacto to VHDL.

1.3 Research Objectives

This research is part of a larger effort to formalize and automate the entire software

development process. Eventually, we plan to be able to formally specify systems and

guide the automated implementation of that specification. We contend that the specified

behavior can be achieved in a much more efficient, reliable and reproducible way (4:3).

Such a capability can make the specification itself the target of maintenance as shown in

Figure 3.

6

Rationale
•L • Formal

__] Formal Development

Informal Requirements Mechanical
Requirements Analysis (Protye) Optimization Concrete

Source

Figure 3. Formal Software Development Process

Our Program Transformation System Paradigm can significantly reduce the need to

understand and maintain source code since it can be automatically regenerated from the

updated specification (4:4). "Tuning" as shown in Figure 3 might be necessary to enhance

efficiency, but is not necessary to correct behavior.

One of the requirements of such a paradigm is a complete and accurate specification.

Hence, we need a means to formally specify and examine system behavior. Real-time

systems are among the most complex systems, and at the same time, one of the most

common types of systems used in the Air Force. Hence, the target of this research effort is

to improve our capability to specify, validate and verify real-time system behavior. Such

a capability could be of considerable use in the development and maintenance stages of

real-time systems.

We plan to build a formal model of the SRS in both the Reacto and VHDL languages

and verify and validate the model against the informal requirements specifications. Previ-

ous efforts to formalize and validate SRSs here at The Air Force Institute of Technology

(AFIT) focused on using the wide spectrum' language Refine' and VHDL in parallel ef-

forts on identical problem descriptions. We observed that the two languages complement

each other, Refine being more abstract and well suited to ironing out behavioral problems

quickly, and VHDL for looking at behavioral details, especially temporal details. We hope

'A wide spectrum language allows descriptions of behavior at both high and low levels of abstraction.
2 RefineTM is a trademark of Reasoning Systems, Inc.

7

to capitalize on our observation by using Reacto (based on Refine) to quickly create a

formal SRS, translate that SRS into VHDL, and examine the SRS in detail in VHDL.

In addition to the results of our previous research, we have several specific reasons for

choosing Reacto and VHDL in this effort. Reacto provides a means to formally organize

system behavior (i.e., the SRS) using a hierarchical Finite State Machine (FSM). Reacto's

visual interface makes it is easy to specify and test behavior. Reacto allows a high level of

abstraction, and because it uses the intuitive notion of a state machine in its formalism, it

can be readily understood by users. Reacto includes an automated verification system for

formal verification of Reacto state machines which we use to verify the SRS as described

in section 1.1. Reacto is based on the Refine language which provides the capability to

generate an automated transformation from Reacto to VHDL. VHDL is based on time, and

it provides a large set of operations to manipulate, investigate, and understand time and

the effects it has on behavior. VHDL is flexible enough to specify behavior in a multitude

of ways, including a state machine formalism. VHDL is a concurrent language allowing us

to simulate the behavior of concurrent components- e.g., multiple state machines.

Our specific objectives include:

1. Define a means to map time constraints into Reacto.

2. Define a means to validate time constraints in Reacto.

3. Specify a transformation from Reacto to VHDL.

4. Specify, verify, simulate, and validate the behavior of a both a cruise control and a

Lift system in Reacto and VHDL.

5. Compare Reacto and VHDL capabilities.

6. Recommend enhancements to Reacto and VHDL.

1.4 Scope of Effort

We are not attempting to verify or validate the systems completely. While that is

our future goal, this research is simply a step in that direction.

8

We are attempting to demonstrate a "proof of concept." If we demonstrate sig-

nificant benefits of the methodology, we can pursue actually generating an automated

transformation and or enhancing Reacto with some of VHDL's capabilities.

We are specifying a partial mapping from Reacto to VHDL, but not a general map-

ping for the complete Reacto language.

1.5 Equipment and Software

We use Reacto version 2.0, running on the software engineering SPARCstation3 2

Network, for the Reacto portion of this research. And, we use Synopsis4 version 2.2a for

the VHDL portion.

1.6 Order of Presentation

First, in Chapter II, we discuss some of the properties of specification languages

desired for real-time systems. Specifically, we discuss specifying timing constraints and

discuss the benefits and detriments of specifying concurrency. Next, we consider some

example requirements specification languages that are used to specify real-time systems.

We then discuss in some detail previous efforts to use Refine and VHDL to specify real-

time system behavior here at the Air Force Institute of Technology (AFIT). Finally in the

literature Review, we introduce Reacto an important part of our research. We conclude

by summarizing some of the features of specification languages for real-time systems we

intend to provide in our methodology.

In Chapter III, we explain in detail the method we apply to improve requirements

specification of real-time systems using Structured Analysis and Design Technique (SADT 5),

Reacto, and VHDL. Additionally, we introduce two sample problems which we use to

demonstrate the methodology.

In Chapter IV, we discuss the application of Reacto to the two sample problems.

We introduce the time extensions we add to Reacto to model timing requirements. We

3 SPARCstationTM is a registered trademark of SPARC International, Inc.
4 SynopsisTM is a registered trademark of Synopsis, Inc.
"5SADTTM is a trademark of SofTech, Inc.

9

describe the test cases used to verify and validate the Reacto specification, and we discuss

refining the specification using Reacto, enumerating many specification improvements.

In Chapter V, we discuss the Reacto to VHDL transformation, describing a map-

ping between the languages and showing example transformations. This process lends

insight into the differences between the Reacto and VHDL languages, and the difficulties

of describing the relationships of system inputs and outputs with respect to time.

In Chapter VI, we discuss the application of VHDL to the two sample problems. We

discuss how VHDL simulations work and increase simulation power. We describe special

VHDL test cases and further specification refinements as a result of the VHDL simulation.

In Chapter VII, we compare the Reacto and VHDL simulatioir results and language

similarities and differences. We summarize the benefits and limitations of the two lan-

guages.

In Chapter VIII, we summarize the results of our research and make some recom-

mendations for future research using Reacto and VHDL. Finally, we discuss some lessons

learned.

10

II. Literature Review

In this chapter, we provide background information about specification languages

for real-time systems. We examine some properties desired of all specification languages,

and then focus on the problems of specifying concurrency and timing constraints. Then

we examine two commercial languages that have been used to specify real-time systems,

looking for their strengths and weaknesses. The first language is not based on state ma-

chines, the second is. After examining these two languages, we review two research projects

here at AFIT involving new approaches to formally specify and validate real-time system

requirements. The last section introduces the Reacto state-based specification language,

describing its main features, preparing the reader to understand our extension and appli-

cation of it in this research.

2.1 Requirements Specification Languages For Real- Time Systems

For many years, software engineers have been searching for ways to discover and

eliminate specification errors and ambiguities for all types of systems. They have tried to

develop graphical and textual specification languages that are convenient to use, and well

understood by users, engineers, and developers and at the same Lime formal enough to

support computer analysis. There are several requirements specification languages avail-

able today that work fairly well for given classes of problems (38). For the most part, these

languages are informal; they depend to some degree on human interpretation and analysis

to discover errors and ambiguities. The more formal the language, the more amenable it

is to interpretation and analysis by computer. Some of the features the experts say all

languages should have are (5, 38):

e Abstract real world well.

* Clearly understood by the specifier, implementer and user.

e Support verification that the specification and implementation are equivalent.

* Easy to modify and manipulate.

9 Allow tracing of requirements.

11

Additionally, real-time systems have some special characteristics that require addi-

tional features (16, 28, 37, 41, 42, 43):

"* Executable specifications.

"* Support specification of concurrency.

"* Support specification of timing constraints.

Zave says an executable specification language is a specialized programming language

that should provide a foundation for an efficient software development process (41:212). It

should satisfy three requirements. One, it must specify the functional (behavioral) require-

ments of the system. Two, it should support formal reasoning that validates consistency

with itself, performance requirements, test cases, and global invariants. Three, it must

lead to an implementation that meets the systems performance and resource requirement,

recording the implementation details during the development process (41:212). It is a work-

ing model of the requirements, and it should not model the system so that it forces the

designer to a particular implementation. For example, defining the structure of a system

is a step towards implementation, and in general it should be avoided (9:239)(11:798).

Since there is some controversy about specifying concurrency and problems associated

with specifying time constraints, we explore those two subjects in Sections 2.1.t and 2.1.2.

2.1.1 Specification of Concurrency Is it smart to specify concurrency? How much

is concurrency a function of implementation, or is it an inherent part of some applications?

Some authors insist that it is rarely necessary to specify concurrency. For example

Ibrahim, Ogden, and Williams assert that specifying concurrency in real-time system re-

quirements documents is a mistake, robbing designers and implementors of the flexibility

to provide a solution that makes efficient use of underlying computer resources (18:247).

Other authors, like Harel maintain that real-time systems are naturally concurrent

and distributed, requiring the ability to specify concurrency (16"404). Drusinsky and Harel

maintain that a natural ability to describe concurrency is essential, and it keeps sequential

descriptions from being an awkward exception (11:800).

12

Ibrahim, Ogden and Williams say that if there is no choice except concurrency,

then concurrency should be specified (18:269). To avoid specifying concurrency when

only performance is required, software engineers should carefully consider the difference

between what needs to be done (the specification) and how something should be done (an

implementation), specifying only essential temporal ordering.

Many specification languages today, for example Petri nets, SYSREM, GYPSY,

PAISLey, Core, SADT and LOTOS allow the user to specify if operations are order de-

pendent, but they do .iot constrain implementors to concurrent implementations. Hence,

they specify what must be sequential, not what must be concurrent (18:251).

2.1.2 Specification of Timing Constraints In an article he wrote to clarify some of

the misconceptions abo,.t real-time computing, Stankovic says, "The fundamental chal-

lenge in the specification and verification of real-time systems is how to incorporate the

time metric (37:13)." He elaborates, saying that including a time metric creates prob-

lems for concurrency models and complicates verification (37:13). He says that we need

to quantitdtively analyze deadlines and repetition rates rather than qualitatively analyze

eventual satisfaction in our specifications and designs.

Dasarathy examines what constructs are needed in requirements specification lan-

guages to quantitatively express timing constraints and how automatic test systems can

validate systems that include timing constraints (8:80). He defines two categories of timing

constraints for real-time systems (8:81):

"* performance constraints are limits on the response time of the system.

"* behavioral constraints are rates at which the environment applies stimulus to the

system.

Together, these two categories express the system's capabilities and limitations from the

system and environment points of view.

Dasarathy defines three kinds of temporal restrictions (8:81):

e Maximum means that there can be no more than t time between events.

13

"• Minimum means that there must be at least t time between events.

"* Durational means an event must occur for at least t time'.

Dasarathy defines an event as "... a stimulus to the system from its environment, or

as an externally observable response that the system makes to its environment (8:81)."

Dasarathy's example of a durational temporal restriction is a requirement to hold a button

down for a specified number of seconds (8:85).

For both maximum and minimum temporal restrictions, Dasarathy defines four

types of timing constraints, based on both the system and environment points of view (8:81-

84). We illustrate these with examples from a telephone system, where the telephone user

creates environmental stimulus for the telephone system.

"* stimulus-stimulus The time between consecutive input events. For example, the time

between dialing digits.

"* stimulus-response The time between an input event and the responding system's

output event. For example, the time between receiver going off hook and the dial

tone.

"* response-stimulus The time between a system output event and the next input event

from the environment. For example, the time between the dial tone and the dialing

of the first digit.

"* response-response The time between consecutive system output events. For example,

the time between telephone rings.

Davis simplifies Dasarathy's four types of timing constraints to two types (9:323).

If both the system and its environment can be specified as cooperating processes, then

we only need stimulus-response and response-response constraints, because the other two

timing constraint types are just these two types from the environment's point of view.

Both Dasarathy and Davis show by example that timers can be set and checked

to verify stimulus-response and response-stimulus constraints via a finite state machine.

'Unlike Dasarathy's definition, we use the VHDL definition of an event- a change in value, thus it has
no duration.

14

Examples from Davis are shown in Figure 4. Figure 4a shows a one-step stimulus-response

Normal ue d - Normal1
use dos x Systemuser d oes x ' S ys te m us r d e x R s o s

E l etime Aet

15 seconds tiSstmmer > 15 secon s te
elapse R e p n eR s o e

(a) (b)

Figure 4. FSM Stimulus-Response Timing Constraint (9:324)

constraint checking mechanism, adding an extra state for the alternate (error) response.

Figure 4b shows the same constraint, but there is no longer a single step between the

stimulus and the response, so a timer is added to measure the stimulus-response time.

Dasarathy proposed the use of a "Latency" feature to test maximum stimulus-

stimulus and response-response constraints (8:82). His Latency feature is implemented

by a "wait for event" statement in the testing language. It associates system response

events with a maximum wait time, triggering an error when the maximum wait time

is exceeded (8:82). Similarly, he defines a "Delay" feature, to test minimum stimulus-

stimulus and response-response constraints (8:85). Davis shows using a timer, and an-

other error state "T" to model measuring the amount of time since a previous event (a

response-response constraint is the time between two output events) as depicted in Fig-

ure 5. Figure 5a depicts measuring a minimum response-response time constraint, and

< 2 seconds > 2 seconds

S S

timeout fimfeout

T T

(a) (b)

Figure 5. FSM Response-Response Timing Constraint (9:326)

15

Figure 5b depicts measuring a maximum response-response time constraint.

There are many other formalisms for expressing time, and specifying time constraints.

Among them, Allen describes intervals and interval calculus in (2, 3). Ladkin expands

Allen's intervals to unions of convex intervals in (24). And Jahanian discusses using Real

Time Logic in (21, 20). These time formalisms may provide more detailed expression of

and reasoning about time, but few have applied them in conjunction with a state machine

formalism. In Temporal Logic Case Study, Wood describes applying temporal logic to a

simple' lift problem in a FSM specification, taking a few months to understand and verify

the specification (39).

2.2 Example Requirements Specification Languages

2.2.1 PAISLey PAISLey is an executable language for specifying digital systems.

Zave and Schell claim it has the following desirable features:

"* Supports maximal (i.e., both synchronous and asynchronous) parallelism, without

mutual-exclusion problems. Abstractly, asynchronous computations are done in sepa-

rate concurrently executing processes; synchronous parallelism is modeled within one

process step by step keeping the specification implementation independent (43:314-

315).

"* Encapsulated computations. Each computation can be abstractly described as a

black box with well defined connections to the outside world. This isolation, in

conjunction with PAISLey's formal representation of control, enables execution of

the specifications (43:316).

"* Toleration of Incompleteness. Here the authors speak of completeness in the sense of

closure; i.e., the domain and range is defined, but the mapping between the two for a

given value need not be completely defined. The authors maintain that this feature

enables testing of what has been said without interference from what has not been

said, and that it provides a means to demonstrate the specification to customers at

any stage in its development (43:317).

2One lift, three floors.

16

"* Timing Constraints. Allows the user to specify any or all of an upper bound, lower

bound, or distribution. Provides the means to examine performance and feasibility

through PAISLey simulations. The authors admit that there is no formal means

to specify traversal times through several processes (e.g., upper bounds on pipe-line

delay) (43:318).

"* Bounded Resource Consumption. Because of PAISLey's bound on the amount of

space needed to store any process, and thereby its bound on the storage requirement

for the entire system's state, specifications written in PAISLey are guaranteed to

take bounded amounts of space and time (43:320).

"* Consistency Checking. Well defined specifications are internally consistent. Specifi-

cations that are not well defined cannot be built (43:322).

"* Coherence. Zave and Schell claim PAISLey is a simple and coherent language (43:322).

Set expressions and three operators combined with mapping operators, a replication

notation, and timing constraints fully define the language. And the simplicity makes

it easy to learn, execute and analyze. They admit that it may be less readable than

more complex languages that uses distinct syntax for familiar phrases (e.g., a CASE

statement.)

While defining the differences between a programming language and a specifica-

tion language, the authors state that "...a specification language must be an abstrac-

tion of all possible implementations, while a programming language has no such require-

ment (43:316)."

Zave and Schell assert that a specification is inconsistent if no set of scheduling deci-

sions can avoid the violation of some timing constraint. The authors state that PAISLey

demonstrates valid stimulus-response time properties of a system by ensuring the process-

level timing constraints are satisfactory. They claim this can also be done analytically in

some cases and by simulation in any case (43:319-320).

Commenting that validation has traditionally been done by inspection, the authors

note that PAISLey goes beyond inspection to execution of the specification, thus insuring

its functional and temporal validity (43:323).

17

Evaluating PAISLey in a more current article, Zave says that it is well suited to

highly concurrent systems, but less suited to applications outside that domain (41:214).

She says it is best suited for describing systems that interact with statically configured

objects in its environment 3 (41:215). She says that PAISLey formally validates functional

properties of real-time systems in a limited sense, lacking proof rules concerning PAISLey

semantics (41:218). Zave states that PAISLey leaves open the implementation choices

on how best to handle timing constraints to the developers, not constraining them to

any particular implementation (41:219). And, she says that PAISLey helps construct

and validate specifications, but it does not help with actually turning the specification

into an implementation by automatically generating target code or some other translation

process (41:220). Finally, she comments that PAISLey has been used widely in academia,

but not in industry, blaming that fact on the lack of understanding most people have

concerning the benefits of using an executable specification language to formalize system

requirements (41:221).

2.2.2 STATEMATE Traditional Finite State Machines (FSMs) can be described as

Mealy or Moore machines. Outputs of a Mealy machine are a function of the transitions,

and outputs of a Moore machine are a function of the FSM's current state. Mealy and

Moore machines are equivalently powerful, and one type of FSM can be converted to the

other. While both Mealy and Moore FSM's are useful for specifying simple behavior in

an intuitive way, they have several limitations that keep them from being used to specify

large real-time system applications:

* They are "flat", having no depth, hierarchy, or modularity resulting in "state explo-

sion" (11:804).

e They inherently impose sequential behavior (28:359).

e They cannot express concurrent behavior (3).

In his On Visual Formalisms article, Harel introduces hierarchical statecharts, based

on Higraphs, which are derived from graphs, Euler circles, and Venn Diagrams. He proposes

3Meaning that PAISLey's data structures are static, making it impossible to change their sizes
dynamically.

18

that statecharts eliminate all three traditional FSM deficiencies (15). He says, "Higraphs

are suited for a wide array of applications to databases, knowledge representation, and

most notably, the behavioral specification of complex concurrent systems using the higraph

based language of statecharts (15:514)."

He notes that graphs are especially well suited for representing a set of related ele-

ments, and that Euler/Venn diagrams represent collections of sets and a structural (i.e.,

set-theoretical) relationship between them. He notes that complex computer applications

managing objects, systems and situations between them can be best described using both

graphs and Euler/Venn diagrams. One of the relationships inherently difficult to represent

efficiently is the Cartesian product of some sets. He proposes that the Higraph repre-

sentation eliminates the exponential growth in size required to represent cross-product

relationships (15:515).

He claims the most beneficial application of Higraphs is to extend traditional state-

transition diagrams to attain a "statechart", which can then be used to efficiently and

rigorously describe the behavior of a real-time or reactive system4. (15:521). The problem

is that the reactive behavior must be clearly described such that humans can understand

it, and at the same time it must be formal and rigorous enough to allow precise comput-

erized analysis. Harel adds a fourth deficiency to traditional FSMs saying that they have

uneconomical transitions 5 (15:522).

Harel maintains that statecharts aren't flat; since they're higraphs, they are hierar-

chical by default. Quantitatively evaluating the state explosion problem, Drusinsky states

that an n-state deterministic statechart can describe a problem which takes a 2" states

in the smallest deterministic traditional FSM (11:804). Statecharts solve the state explo-

sion problem by orthogonality. Statecharts handle concurrency by allowing output events

to cause a transition in another part of the statechart (15:523). Users also claim that

statecharts allow concurrency via orthogonality (34:53). Consequently, not specifying con-

currency specifies sequential behavior (34:53).

4Harel defines a real-time system as an event driven system, continuously reacting to external and
internal stimuli.

'The same event forces us to specify many transitions, each represented by a separate arrow from
different states.

19

Summarizing, Harel says, "...the intricate nature of a variety of computer-related sys-

tems and situations can, and in our opinion should be represented by visual formalisms:

visual, because they are to be generated, comprehended, and communicated by humans;

and formal, because they are to be manipulated, maintained, and analyzed by comput-

ers. (15:528)."

In order to apply his statechart visual formalism, Harel has implemented the

STATEMATE 6 working environment for specifying and developing complex real-time or

reactive systems. STATEMATE descriptions are three separate views structural, func-

tional, and behavioral (16:403). The structural view is a hierarchical decomposition of the

system into modules and the information that flows between them including control sig-

nals (16:404). The functional model hierarchically describes system activities, data items

and in addition to what is normally a functional decomposition, control activities that

specify behavior (16:404). Third, the behavioral view specifies the behavior of the con-

trol activities (16:404). STATEMATE implements the graphical language statecharts to

specify the behavior of control activities. This solves the traditional FSM "flatness" and

concurrency problems, and makes transitions economical (16:406).

Harel claims STATEMATE descriptions are easily produced, analyzed and modified

by humans (16:404). They are also formal enough for computerized validation, simulation,

and analysis during any development phase (16:403).

STATEMATE provides static and dynamic analysis of the system. Static analysis

includes consistency and completeness checks, comparing the three different views of the

system (16:409). Dynamic analysis includes running the system through scenarios inter-

actively, and observing the system's behavior. During dynamic analysis, users can modify

the system description and rerun the scenario to check for corrected behavior (16:410).

Users can also examine dynamic behavior in a non-interactive simulation using Simula-

tion Control Language (SCL) programs. Simulations can be performed on small parts of

the system or the entire system. Dynamic simulations are valuable tools for examining

time-critical performance and efficiency constraints (16:411).

'STATEMATETM is a registered trademark of i-Logix, Inc.

20

In STATEMATE, actions are accomplished by executing transitions, entering or exit-

ing states, or by being in a state. It combines the capabilities of Mealy and Moore machines

together (11:798). STATEMATE also has the capability to execute scenarios involving

multiple statecharts (16:410). STATEMATE can produce VHDL code as a step towards

"silicon compilation" of hierarchical state machines for hardware designers (16:412).

Smith and Gerhart comment on the fact that STATEMATE is unable to model large

numbers of similar activities (like a collection of identical bank-teller machines) (34:54).

They note that Harel has proposed extensions to STATEMATE to handle the problem,

but his extensions don't address the problem of distinctly referencing individual activ-

ities (34:54). Alagar and Ramanathan say that the statecharts formalism "...does not

demonstrate formal reasoning based on the diagrammatic description (1:254)," insinuat-

ing that the verifications performed do not actually verify everything described in the

statechart diagrams.

2.3 Douglass and Eickmeier

Randy Douglass and Dan Eickmeier researched transforming informal specifications

into formal executable SRSs at AFIT in 1991. Douglass defines a method to transform

a specification from its graphical and textual representation into Refine (10). He trans-

formed two problem specifications (a home heating system and a lift system) from their

informal written English specifications into SADT and finally into Refine. He used Refine

simulations to discover and correct specification errors and ambiguities. He also examined

the benefits from the translation and simulation process. Eickmeier defined, used and

evaluated a methodology like Douglass' to transform and execute the same two problem

specifications in VHDL (12).

Because our research is related to Douglass and Eickmeier's efforts, we describe the

SADT, Refine and VHDL languages in Sections 2.3.1, 2.3.2, and 2.3.3. Then, we follow up

with their conclusions in Section 2.3.4.

2.3.1 SADT Douglass and Eickmeier used SADT as an intermediate informal spec-

ification language between the written English specification and the formal VHDL and Re-

21

fine specifications for their research. Douglas Ross introduced SADT in the late 1970s (7).

SADT has evolved since then, and Ross discusses SADT's metamorphosis in (31, 32, 33).

SADT is a graphical and textual specification tool for software systems. Ross (33)

describes it as a "blueprint" for software. The SADT "blueprint" is intended to clearly

communicate the necessary system requirements for successful implementation by a skilled

programmer.

Functional SADT diagrams are similar to the traditional dataflow diagrams. Figure 6

is an example SADT diagram. The labels in Figure 6 illustrate the meaning of each

AUTHOR: Eickmeier DATE: 1112/91 READER:

PROJECT: Demo REV: 1.0 DATE:

Controls

Activity
Inputs Outputs

(Function)

Mechanism

NODE: A-0 TITLE: Ativity Box NUMBER: oo-o

Figure 6. Sample SADT Diagram (12:11)

graphical object. Boxes in SADT diagrams represent activities or functions of the software

system. For example a box labeled "Check-Password" represents the activity of verifying

a password. Input arrows entering activity boxes from the left represent data flowing

into the box. Continuing with the Check-Password example, inputs labeled "Userid" and

"Password" are expected. Controls are inputs that constrain the activity. If our Check-

Password activity allows system managers to set the length of passwords, "Password-

22

Length" is a Control input. The Mechanism arrow represents an already existing entity7

(like a system library routine) that is known to be available and that is used to perform

the activity. Finally, Output arrows represent the product of the activity, e.g., our Check-

Password activity might produce a boolean flag "Access-Granted."

SADT diagrams are usually limited to six or seven activities per diagram, and like

dataflow diagrams, they are hierarchical. Users describe sub-activities of complex activi-

ties in additional SADT diagrams, until at the lowest level further decomposition is not

necessary.

Relative position of activities within SADT diagrams does not imply sequential be-

havior for the connected activities. Behavioral details for each activity are specified infor-

mally on accompanying documentation. Pseudocode, FSMs, and decision tables are typical

means for describing SADT activity behavior. Douglass and Eickmeier use decision tables

to specify the behavior of every lowest level activity.

Among other criticisms of SADT, Tse and Pong maintain that SADT is too de-

pendent on functional breakdown, to complicated for users to fully understand, provides

no smooth transition from specification to implementation and that it is too informal for

automated verification (38:148).

2.3.2 Refine Refine is a formal specification environment and language that pro-

vides high level abstractions and operators. It supports execution of system specifications

to examine specification accuracy and completeness.

Refine authors define the following goals for Refine (30:1-3):

1. Provide an integrated environment supporting high-level (abstract) programming.

2. Provide a tool to analyze and reformat (transform) programs.

3. Provide an extensible language- i.e., users can define domain specific programming

environments. Allow users to define object classes, types, functions and grammars.

7Example entities are: a person, software routine, or hardware device.

23

4. Allow users to specify programs in whatever format or style they desire, including

high level abstractions and low level procedural languages.

5. Support stepwise refinement- i.e., gradually convert specifications into implemen-

tations a step at a time (also supports "Rapid Prototyping").

Refine integrates set theory, logic, transformation rules, and pattern matching, pro-

viding a powerful programming environment including a parser and compiler (30:1-2).

Refine's high level language constructs are not available in other commercially available

languages (30:1-3). Refine stores programs, documents, test cases, etc. in a database

called an object base or knowledge base. It provides the capability to implement program

transformation and documentation systems (30:1-2).

The Refine compiler is a program transformation system which compiles refine pro-

grams into Lisp by applying program transformation rules defined in Refine itself (30:1-2).

Users can define their own languages by describing the grammar with BNF produc-

tions. Refine produces a lexical analyzer, parser, pattern matcher, pattern constructor and

prettyprinter for user-defined languages (30:1-2).

2.3.3 VHDL Interestingly, hardware engineers have also been searching for a tool

to specify the behavior of their systems. In 1981, the Department of Defense's VHSIC

Program Office contracted for an industry standard and technology independent hardware

description language which generates executable specifications. VHDL's goal is to describe

systems at a number of different levels of abstraction, and to simulate systems at any

mixture of those levels. (26, 12). Since the mid 1980's engineers have used VHDL to

specify the behavior and structure of their designs, and they have used VHDL's event-

driven simulator to validate them. In 1991, Eickmeier investigated using VHDL to specify

and simulate software systems. We describe the features of VHDL that Eickmeier used, and

the features that we use in our Research in the following paragraphs. Our focused discussion

greatly simplifies VHDL, and we refer you to Lispett, Schaefer, and Ussery (26) and the

IEEE Standard VHDL Language Reference Manual (19) for more detailed discussions of

the language in general.

24

A design entity is the basic VHDL unit of description. A design entity is used to

represent individual components or functions which make-up a system. VHDL allows users

to generate multiple copies of an entity by instantiating it one or more times in a system.

A design entity consists of an Entity Declaration and an Architecture Body. The Entity

Declaration defines the inputs and outputs of the entity so other components can interface

with it (12:12).

The SADT-like Figure 7 shows a Full-Adder entity. Other design entities interface

with the Full-Adder design entity via the Ports A, B, Carry-in, Sum, and Carry-out.

A Sum

B Full-Adder
CarryIn ryO

Figure 7. VHDL Full-Adder Entity Diagram (26, 12)

In VHDL code, the Full-Adder entity looks like Figure 8.

entity Full-Adder is
port(A, B , Carry-In : in Bit; Sum, Carry-Out : out Bit);

end Full-Adder;

Figure 8. VHDL Full-Adder Entity Code

The Architecture Body describes the design entity in one of two ways (6, 26, 12):

* structural description A composition of existing design entities.

25

* behavioral description A procedural description of the entity's transformation of in-

puts to outputs.

A design entity can be described and decomposed using a whole hierarchy of structural

definitions, but ultimately, lowest level entities have behavioral descriptions. Continuing

with our Full.Adder example, suppose we have design entities for a Half-Adder and an

OR-gate. We can use them to build our FullAdder in a structural description as depicted

in Figure 9. Alternatively, we could behaviorally describe the FullAdder with an algorithm

FullAdder
AB -H- -I~dr Tf _u

Carry_In t" '-Sum

Figure 9. VHDL Full-Adder Architecture Body (26, 12)

that adds A, B, and Carry-In producing the Sum and Carry-Out. Our algorithm would

be implemented in a process. A process is a sequential program, defined in an architecture

body8 , which runs concurrently with all other processes during a simulation.

Entities communicate via Signals. Signals are like variables, except they aie managed

by signal drivers. A signal driver is like a queue; it holds the current value and all currently

scheduled future values for the signal it is associated with. The simulator updates signals

during event driven simulation cycles. Figure 10 depicts VHDL Simulation cycles. The

simulator updates all signals according to values scheduled for the current simulation time

SMultiple processes can be defined in an architecture body.

26

Start Simulation

Update Signals Execute Processes

End Simulation

Figure 10. VHDL Simulation Cycle (26:12)

in -he signal driver schedules, then it executes all processes that are sensitive9 to the

events'0 , scheduling more events in the signal drivers. When there are no more signal

events scheduled for the current time, the simulator increments the clock to the next event

time. Repeated simulation cycles without the clock advancing are called delta delay cycles.

The simulation cycle ends when no processes are sensitive to any updated signals. During

the simulation, we access the clock through the predefined time valued variable now.

The signal drivers operate in conjunction with the VHDL simulator. Signal assign-

ment examples in Figure 11 executed sequentially at time zero modify the signal driver

queues resulting in signal values as shown in Table 1. Referring to Table 1, no signal

A <= 1;
B <= 2;
B <= 3 after 3 sec;
C <= 4, 5 after 3 sec, 6 after 5 sec;
C <= transport 7 after 4 sec;

Figure 11. VHDL Integer Signal Assignment Example

assignment statement changes the signal value in the current simulation cycle; for example,

the signal assignment to signal A does not take effect until the next delta delay. Note that

the second signal assignment to signal B cancels the first signal assignment to B. This

is what we call an inertial signal assignment, and the other type of signal assignment is

transport, illustrated by the second signal assignment to signal C. Notice that the trans-

"9Processes declare which signals they are sensitive to.
"°VHDL events are signal value changes.

27

Table 1. VHDL Signal Assignment Values

Signal ICurrent Next i 1 213 3 4 5 J6]
Name Value Delta Delay sec sec sec sec sec sec

A 0 1 1 1 111 1 1
B 0 0 0 0 3 3 3 3
C 0 4 4 4 5 7 7 7

port signal assignment does not cancel the first signal assignments to signal C, only the

changes to C scheduled to occur after the second signal assignment delay (C never holds

the value 6).

During the Execute Processes portion of the simulation cycle, processes are either

active or suspended. A process is active when a event occurs on a signal in its sensitivity

list. A sensitivity list is an optional part of a process declaration. The VHDL statement

Or-Process: process(A, B)

declares process Or-Process, and its sensitivity list includes signals A and B. A process

is suspended when no events occur on signals in its sensitivity list during the current

simulation cycle, or when no sensitivity list is defined and the process is waiting on a wait

statement condition. Processes without sensitivity lists are allowed to have wait statements.

There are four forms of wait statements'1 (26:67):

"* wait; Permanently suspends a process.

"* wait on signal-list; Similar to the process sensitivity list, the process remains sus-

pended until an event on a signal in the signal-list.

"* wait until boolean-condition; The process stays suspended until the boolean-condition

is true.

"* wait for time-expression; The process is suspended until time-expression time has

passed.

"The different forms of wait statements can be combined- e.g., "wait on signal-list until boolean
condition for time-expression;"

28

VHDL provides a series of signal attributes which we use to examine signal history

information and to create new signals for process sensitivity lists1 2:

"* s'event A boolean-valued attribute that detects a signal assignment on s during the

current simulation cycle when the new signal value assigned is different from the

previous signal value (26:265).

"* s'active A boolean-valued attribute that detects a signal assignment on s during the

current simulation cycle even though the new signal value assigned is the same as

the previous signal value (a transaction1 3) (26:265).

"* s'last-event A time-valued attribute that returns the amount of time elapsed since

the last event on s (26:266).

"* s'last-value An s-type-valtued attribute that returns the value of s before the last

event on s (26:266).

"* s'stable(t) A signal-valued attribute that generates a boolean signal with the value

"true" if s has not had an event for t time otherwise, the new signal value is

false (26:265).

"* s'transaction(t) A signal-valued attribute that generates a bit signal whose value

toggles (alternates between '0' and '1') every transaction (26:265).

2.3.4 Douglass and Eickmeier Conclusions Assessing his experience with Refine,

Douglas concludes that Refine executable simulation is a major benefit when transforming

SADT to Refine, pointing out improper behavior early in the development stage (10:86).

He also states that the resulting Refine code serves as a formal foundation for the design

and implementation phases of the software life cycle (10:87).

Eickmeier concludes that the SADT to VHDL transformation and VHDL simulation

improves the requirements analysis process (12:147-148). Generating and executing the

VHDL simulation validates the specification's completeness, consistency, feasibility, and

"12This list includes only the attributes we use, not all attributes defined in VHDL.
"Every event is also a transaction.

29

testability (12:148). He states that the executable specification provides effective rapid-

prototyping (12:148). Eickmeier's recommendations include substituting a state transition

approach for behavioral description in place of decision tables and designing reusable VHDL

components such as a linked list package.

Although both the heater and lift are real-time systems, Eickmeier and Douglass

were not focusing on real-time system specification per se. But, among other things, they

concluded that VHDL was better than Refine for specifying and examining timing require-

ments of both the heater and lift problems (10:77)(12:143). In fact, Eickmeier recommends

a three step translation process (SADT to Refine to VHDL) because he believes it is easier

to initially create the Refine implementation, iron out significant behavioral problems, and

then move to VHDL to investigate the details of the behavior with respect to time (12:148).

2.4 Reacto

Kestrel Institute"4 is currently developing a product called Reacto, which works in

conjunction with Refine to support software specification of reactive systems. Reacto's

purpose is to "provide an environment that supports the acquisition and correct imple-

mentation of software specifications for reactive subsystems in the COMSEC [Communica-

tions Security] domain (23:2)." Reacto is based on hierarchical finite state machines similar

to statecharts, but without concurrency mechanisms like orthogonal states (13:2). Users

may specify a concurrent system by creating multiple FSMs communicating with shared

interface variables. Reacto developers are focusing on the formal semantics of the FSM

language and verification of state hierarchy assertions (13:2). Reacto has three subsystems,

the Reacto Editor, Reacto Compiler, and the Reacto Simulator.

Users create formal specifications (R-Specs) with the Reacto Editor. Users compile,

consistency check, and verify R-Specs using the Compiler subsystem, and they use the

Simulator subsystem to execute and examine the behavior of the R-Spec.

2.4.1 Reacto Editor The Editor has three modes, Graphics, Graphics-Outline and

Developer. In the Graphics and Graphics-Outline mode, users edit and create the Graphical

1 4Kestrel Institute is a research facility for Reasoning Systems.

30

structure of the FSM by specifying and naming hierarchical States and transitions between

the states. These states and transitions become objects in the Refine knowledge base, and

can be manipulated in all editor modes.

Collectively, the sets of state and transition objects associated with a particular state

machine comprise the R-Spec (23:3,4). Once the state and transition objects are created,

users save them from the knowledge base into text file, preserving the R-Spec in the Reacto

spec library.

In the Editor's Developer mode, users examine and update the R-Spec text files via

the public domain Emacs editor. Users can augment R-Spec states and transitions with

global variables, Refine functions, and interface variables by creating an auxiliary file in

the Developer mode (22:10).

In the Editor's Graphics-Outline mode, users can examine and update both R-Spec

graphics and textual object attributes.

2.4.2 Reacto Compiler The Reacto Compiler's compile function transforms the R-

Spec into target code"5 creating a fast load (.fasl) file which can be loaded later without

recompiling. The Refine environment supports incremental parsing and compilation of the

R-Specs.

The Reacto Compiler's consistency checking function checks to see if the R-Spec

satisfies the syntactic and semantic constraints imposed by the system (23:3).

The Reacto Compiler's verifier function proves consistency of R-Spec behavior with

regard to any state assertions users make (23:3). The verifier has three parts, a verification

condition generator, a theorem prover, and a user interface. The theorem prover is based

on natural deduction, term-rewriting, and hierarchical deduction (22:1). Users provide

axioms to support the theorem prover in Lemma files (22:3). Users can incrementally

apply the Verifier to States, transitions, or previously saved proof files (22:3-4). Users can

interactively participate in the verification process, making inquiries and responding to

forward and backward interaction prompts (22:13-14).

"15Target code is Lisp code that is executable in the Refine environment.

31

2.4.3 Reacto Simulator The Reacto simulator is interactive and menu driven. Dur-

ing simulation, it highlights active states and transitions in the graphical display window

depicting FSM behavior to users. It displays FSM output in a second window. The sim-

ulator prompts for input and takes input from users via the Emacs buffer. In a fourth

window, the simulator displays the Reacto source code currently executing in conjunction

with the active transition and states.

2.4.4 Reacto States Reacto States have the following user defined attributes:

* name

* substates

* initial-state

* own-vars

* assertion

* runtime-check

Users define a state's name via the graphics editor as they create the state.

The Substates attribute is the set of states hierarchically subordinate to the state.

A state with no substates is a primitive state, and any state with substates is a Su-

perstate. Users create substate attributes during Graphical or Graphics-Outline editing

sessions (23:4).

An initial-state is the superstate's default substate. The default state may be another

superstate or a substate. All superstates have an initial-state, and no primitive state has an

initial-state. The first substate created during the Graphical or Graphics-Outline editing

session is automatically the initial state of a superstate (23:4).

Own-vars is a set of variables defined for the state during subsequent Developer or

Graphics-Outline editing sessions. These variables are visible in the state they are defined

in and any substates of a superstate. Global variables and interface variables defined in

an auxiliary file are visible in all states (23:4).

A state assertion is a boolean predicate over the state's visible variables. In the

Developer editor configuration, users write state assertions on those variables to express the

32

properties of the specification that are applicable to the state. Assertions are the subject of

the Verifier's proofs, and they can be checked during R-Spec execution as states are entered.

Assertions are not necessary for execution, but they do give the user confidence that the

specification is consistent (23:4). Superstate assertions are verified each time a substate

of that superstate is entered. If an assertion fails during simulation, the user is notified

during the simulation by an error message in one of the simulation windows. Assertions

can be written to verify whatever the user wants to say about the state machine; Reacto

is not limited to verification of system defined specification properties like STATEMATE.

The runtime-check attribute is a boolean predicate over the state's visible variables

like the state assertion. The difference between the runtime-check and the state assertion

is that runtime-checks are not subject to Verifier proofs (23:4). Like assertions, users add

runtime-checks to the R-Spec during Developer or Graphics-Outline editing sessions.

2.4.5 Reacto Transitions The Reacto FSM model is a Mealy machine; all R-Spec

behavior is associated with the transitions. Reacto transitions have the following user

defined attributes:

"* label

"* from-state

"* to-state

"* history-flag

"* predicate

* action

* priority

Users define a transition's label via the Graphics or Graphics-Outline Editor as users

create the transition.

A transition's from-state is the originating state of the transition. When users define

transitions from a superstate, the transition applies to all substates of that transition

33

except a return"6 state. The from-state is created during Graphics or Graphics-Outline

editing sessions (23:5).

A Reacto transition's to-state is the destination state of the transition. When users

define transitions to a superstate, the transition means that the FSM enters the default

primitive substate of the to-state. History transitions return the FSM to the most recently

visited primitive state of the to-state superstate (23:5). Reacto fills in the to-state attribute

during Graphics or Graphics-Outline editing sessions.

The history-flag attribute is a boolean flag added by the user during Developer or

Graphics-Outline editing sessions. If the history-flag is true, the transition must be a self

loop on a single state (i.e., the from-state and to-state attributes are the same). Thus,

when a history transition's from-state and to-state attributes are a superstate, it returns

the FSM to the primitive substate of the superstate from which it started (23:5). Users

can use history transitions to conveniently specify the same behavior for all sub-states of

a superstate.

A transition's predicate is a boolean predicate over the visible variables which must

be true for the transition to be taken (executed) (23:6). Users add the predicate during

Developer or Graphics-Outline editing sessions.

Users create the transition action attribute during a Developer or Graphics-Outline

editing session to define the behavior of the transition. Transition actions are the means

for the FSM to accomplish its work. The work is accomplished by modifying the values

of the originating states visible variables with assignment statements or function calls.

Transition actions can also use the call-state mechanism to move the FSM to another

superstate. States called via the call-state mechanism must be disconnected from the

FSM, and control is returned to the originating state when a return state is entered (23:5-

6). Since recursive call-states are not allowed, the call-state mechanism implements textual

substitution (23:6), which is a means to specify the same behavior for the set of transitions

calling the same state.

16 A return state is a primitive state that originates no transitions.

34

Users define transition priority during Developer or Graphics-Outline editing ses-

sions. Default priorities are zero. When more than one transition predicate is true for

transitions of equal priority, the first one created (or loaded into the knowledge base from

a saved R-Spec) is executed first (23:6).

2.4.6 Reacto I/O We do not use the predefined Reacto I/O facilities in our research.

But, for the interested reader, we explain them in Appendix C.

2.4.7 Reacto Summary Reacto is so new, there are no published studies involving

its use. It is a large system; the Refine/Reacto executable we are currently using is more

than 35 megabytes of executable code and takes several minutes to load into memory on

our SPARCstation 2.

Reacto comes with three example R-Specs, Voting-Machine, KL-43, and Reference-

Monitor. The Voting-Machine is a simple R-Spec that authenticates voters, accepts and

validates votes, and computes the tally (23:51). The KL-43 is the most sophisticated

example R-Spec. It is an encrypting device designed to protect written communication

over an unprotected channel (23:61). It demonstrates the use of the call-state mechanism.

The Reference Monitor R-Spec is not explained in the Reacto Users Manual.

According to Gilham, Goldberg, and Wang, Reacto's goal is to provide a system that

acquires and correctly implements real time SRSs (13:1). They claim Reacto implements

formal FSMs with a convenient user interface and a verification system that checks the con-

sistency between the specification and its operational behavior (13:7). Additionally, they

assert that executable R-Specs provide rapid prototyping, guaranteed action termination,

and data abstraction (13:8).

2.5 Summary

In this chapter, we discovered that specification languages for real-time systems

should have the following properties:

9 Abstract the real world well.

35

"* Clearly understood by both specifier, implementer and user.

"* Support verification that the specification and implementation are equivalent.

"• Easy to modify and manipulate.

"* Allow tracing of requirements.

"• Executable specifications.

"* Support specification of concurrency.

"* Support specification of timing constraints.

It is difficult to achieve all of these properties in a single implementation. Refine and

Reacto are perhaps the most abstract languages of those we've examined. STATEMATE

and Reacto, because of their visual interface, are perhaps the most clearly understood.

All of the languages except SADT support verification that the specification and imple-

mentation are equivalent because they are executable. They support running test cases

and comparing the results of the test cases to the implementation. Some, like PAISLey,

STATEMATE, and Reacto actually perform some verification of the specification itself.

All of the languages purport relatively easy modification and implementation, and this is

a somewhat subjective criteria. However, users of both PAISLey and SADT voice con-

cern about the complexity of those languages which makes it more difficult to modify and

manipulate specifications. The ability to trace requirements is supported best by STATE-

MATE's three views, and to a lesser extent by SADT's textual documentation. All of the

languages except SADT provide executable specifications. The PAISLey, STATEMATE,

SADT, and VHDL languages are the only languages that inherently support specifying

concurrency at all levels in the specification. Reacto supports it by allowing separate

specifications of communicating FSMs. PAISLey, STATMATE, and VHDL are the only

languages that currently support concurrent executable simulations. To some extent, all

languages can support specification of timing constraints, but only PAISLey, STATEM-

ATE, and VHDL inherently provide features necessary to specify timing constraints and

examine timing constraint consistency.

In support of our objectives, we keep these properties in mind, and we evaluate our

methodology with them in Chapter VIII.

36

III. Improving Requirements Specification

Our stated objective is to investigate the feasibility, benefits, and problems associated

with formalizing, validating, and verifying real-time SRSs using Reacto and VHDL.

In order to accomplish that objective we need three things. First, we need a method-

ology or process to organize and define the activities involved in validating and verifying

real-time SRSs using Reacto and VHDL. Second, we need to define some significant sup-

porting activities that must be accomplished before we can apply the methodology. And

third, we need some example problems to illustrate the methodology. This chapter dis-

cusses each of these.

3.1 Methodology

Figure 12 summarizes the main focus of this research effort. Software engineers may

recognize it as a data flow diagram. The "System Specification" store is the starting

point. Initially, the store represents the informal system requirements as provided in a

written English problem description. Arrows in Figure 12 represent data items that are

System Behavior/Constraints
Specification

Modifications Objects 10 Spcfcto Objects
Modifiation Generation

Reacto R at eco-V D H LC d
Analysis Code

Figure 12. Reacto and VHDL Validation Process

37

passed among stores and activities. The boxes represent sub-activities or work units of the

research effort.

From the System Specification store, we extract the behavior and constraints data

that allow us to generate a Reacto state machine Specification (R-Spec). We organize

behavior by creating a Reacto state machine that models the expected behavior. We

organize constraints on the behavior in the Reacto state machine by assigning them to the

applicable states and transitions. This formal R-Spec now takes the place of the informal

written English specification in the System Specification store.

Once we have generated an R-Spec we take one of three paths. The first path

we can follow leads to the Reacto Verification activity. This activity consists of using

Reacto's automated verification system to formally verify the R-Spec which at this point

is a set of objects in Refine's knowledge base. In addition to state machine objects, we

can provide a lemma file (a file containing axioms) when required for certain proofs. We

subsequently analyze verification results, and if necessary make modifications to the System

Specification, which is now the formal R-Spec.

The second path out of the Reacto Specification Generation activity leads to the

Reacto Simulation activity. The simulation activity is exercising the R-Spec interactively

by updating inputs to the state machine manually, or by inputting a simulation file. We

subsequently analyze simulation results, and if necessary make modifications to the System

Specification.

The third path out of the Reacto Specification Generation activity leads to the

Reacto-VHDL Transformation activity. This is the activity where the R-Spec objects

are used to generate a formal VHDL state machine Specification (V-Spec). In Chapter V,

we describe this activity in detail. For the purposes of this research effort we make this

transformation manually using the R-Spec source files as input, and outputting VHDL

source files. An automated transformation of the R-Spec in Refine's knowledge base to the

V-Spec source file is possible, and we discuss the feasibility of an automated generation in

Section 5.8.

38

Once the transformation is complete, and in preparation for the VHDL simulation,

we manually configure the V-Spec or manually generate a VHDL testbench and test con-

figuration. Once configured, we simulate the V-Spec using the VHDL debugger or using

the testbench. Testbench simulations are similar to our Reacto file driven simulations.

We subsequently analyze verification results, and if necessary make modifications to the

System Specification, which is now the formal R-Spec, starting the Reacto and VHDL

Validation Process over.

3.2 Supporting Activities

While Figure 12 represents the main focus of this research effort, there are significant

supporting activities which are necessary to implement it. Getting to the point where we

can apply Reacto and VHDL to real-time SRSs requires some additions to Reacto to

manage time, and definition of the transformation process from Reacto to VHDL.

Reacto allows us to improve on traditional state diagrams using hierarchical state ma-

chines. With hierarchical state machines, we can specify complex behavior more efficiently

and more understandably. But we must describe time and time constraints, something

which is not currently provided in Reacto itself.

We define a method for augmenting R-Specs with time. This includes specifying time

constraints, implementing a system clock, transition delays, timers, and making assertions

about time. We illustrate using Reacto to specify real-time systems by applying it to two

problems. Finally, we annotate the specification improvements that are made as a result

of using Reacto.

Once we are satisfied with the Reacto verification and simulation results, we specify,

simulate and validate the R-Spec in VHDL, and annotate the specification improvements

made as a result of the VHDL simulations.

Before we can do this, we must transform the R-Spec into a V-Spec and verify that

the Reacto state machine and VHDL state machine display equivalent behavior. Reacto

39

primitive states and transitions map directly to VHDL states and transitions'. Although

the two state machines are basically the same, Reacto and VHDL themselves are signifi-

cantly different.

Reacto is a morr abstract language; for example, it allows the use of sets and se-

quences, providing quantification on those sets and sequepves without concern for the

details of implementation. VHDL, on the other hand, is a procedural language, with ao

predefined sets, sequences or quantification operators. Reconciling this difference between

the languages is not trivial, especially when we look forward to an automated transforma-

tion. For example, implementing sets in VHDL requires generating a set data type and

the traditional set operators like union, intersection, set membership, etc.; additionally,

because we need to support quantification it requires generating VHDL functions that

perform the quantification operation and return boolean values. Since VHDL is a strongly

typed language, providing these general set operations is difficult.

The fact that VHDL is based on time and Reacto is not is another significant differ-

ence between the two languages. For example, we must manage a system clock in Reacto

with the Reacto state machine, in VHDL, the simulator manages the clock In VHDL, the

simulator schedules transition execution, in Reacto, transitions update the clock leading

to a strictly sequential simulation.

Not only are Reacto simulations sequential, but Reacto is a sequential language.

In contrast, VHDL is a concurrent language. While VHDL typically runs on sequential

processors, it implements concurrency via an event driven simulation as described in Sec-

tion 2.3.3. We exploit VHDL's concurrency to increase simulation power by simulating

multiple state machines instead of a single state machine at a time like in Reacto. VHDL's

concurrency allows us to independently update input to those state machines regardless of

the state machine transitions.

Because of the differences between Reacto and VHDL, the translation between them

is not completely straight forward. But as we exploit their differences, we benefit. Ex-

ploiting the differences between Reacto and VHDL helps us to understand the informal

1We do not use Reacto interface variables or call states, hence we provide no mapping between Reacto
and VHDL for these two Reacto objects.

40

problem quickly and produce a better SRS. Another benefit is increased understanding

of real-time system specification in general, especially with concern for time constraints.

Finally, it leads us to discover ways we can improve Reacto and VHDL and our use of

them.

3.3 Example Problems- Introduction

To illustrate the use of our methodology, we examine two relatively small real-time

problems. The first problem is a typical cruise control, and the second, a more complicated

lift (elevator) control system.

3.3.1 A Cruise Control The Cruise Control problem is a portion of the automo-

bile Management System problem2 from Derek J. Hatley and Imatiaz A. Pirbhai's book

Strategies For Real- Time System Specification (17).

We have several reasons for choosing the cruise control problem. First, cruise control

is a well known and simple example of a real-time problem with other published solutions

for comparison (34, 17). The case study in Hatley's book includes well defined response-

response timing constraints, with a rate constraint (call it a form of response-response

timing constraint). We have a Cruise-Control specification developed using Eickmeier's

methodology, and are familiar with the problem.

3.3.1.1 Cruise Control Problem Statement The cruise control function is to

take over the task of maintaining a constant speed when commanded to do so by the driver.

3.3.1.2 Cruise Control Requirements The driver must be able to enter several

commands (Ri), including: Activate, Deactivate, Start Accelerating, Stop Accelerating,

and Resume. The cruise control function can be operated any time the engine is running

and the transmission is in top gear (R2). When the driver presses Activate, the system

selects the current speed, but only if it is at least 30 miles per hour, and holds the car at

2The Automobile Management System problem was derived from a problem used at the Department
of Defense's July 1985 Software Technology for Adaptable, Reliable Systems Methodology Conference in
Colorado Springs, Colorado.

41

that speed (R3). Deactivate returns control to the driver regardless of any other commands

(R4). Start Accelerating causes the system to accelerate the car at a comfortable rate until

Stop Accelerating occurs, when the system holds the car at this new speed (R5). Resume

causes the system to return the car to the speed selected prior to braking or gear shifting

(R6).

The driver must be able to increase the speed at any time by depressing the acceler-

ator pedal (R7), or reduce the speed by depressing the brake pedal (R8). Thus, the driver

may go faster than the cruise control setting simply by depressing the accelerator pedal far

enough. When the pedal is released, the system regains control (R9). Any time the brake

pedal is depressed, or the transmission shifts out of top gear, the system must go inactive

(RIO). Following this, when the brake is released, the transmission is back in top gear,

and Resume is pressed, the system returns the car to the previously selected speed (Rl1).

However, if a Deactivate has occurred in the intervening time, Resume does nothing (R12).

3.3.1.3 Cruise Control Constraints The system controls car speed by driving

a throttle actuator. The actuator operates in parallel with the gas pedal mechanism.

Whichever demands greater speed controls the throttle. The cruise control drives the

throttle actuator with an electrical signal that varies linearly in accordance with throttle

deflection. It ranges from 0.0 volts to 8.0 volts (Cl); 0.0 volts doses the throttle, and 8.0

volts sets the throttle wide open.

When the cruise control senses speed more than 2 mph above the selected speed,

it closes the throttle completely (C2)- e.g. when coasting down a steep hill. At speeds

below this, it is to drive the throttle to a deflection proportional to the speed error until,

at 2 mph below the selected speed, the throttle is wide open (C3)- e.g. when climbing

a steep hill. Thus, the cruise control is the feedback or control part of a servo loop, in

which the engine is the feed-forward part. To operate smoothly, the system must update

its outputs at least once per second (C4).

To avoid uncomfortable acceleration, the actuator must not open faster than 0.8

volts per second (C5). It may close at any rate however, since the car just coasts when the

throttle is closed. According to automotive engineers, these characteristics keep the car

42

within 1 mph of the selected speed on normal gradients giving a smooth and comfortable

ride.

When the system is accelerating the car, it must measure the acceleration and hold

it at 1 mph/sec. Again the gradient affects the throttle setting. When acceleration reaches

1.2 mph/sec, the system should close the throttle (C6); at 0.8 mph/sec, it should set it wide

open (C7). Between these limits, the throttle setting should vary linearly with acceleration

(C8).

We summarize cruise control timing constraints in Table 2.

Table 2. Cruise Control Timing Constraints (17:286)

Input Output
[Signal Event Value Response Time

Activate goes true cruise* 500 ms
Resume goes true cruise* 500 ms

Deactivate goes true zero 500 ms
In-Top-Gear goes false zero 500 ms
Braking goes true zero 500 ms
Start-Acceleration goes true accelerate* 500 ms
Stop-Acceleration goes true cruise* 500 ms
Engine-Running goes false zero 500 ms
Current-Speed changes changes* 1000 ms
Acceleration changes changes* 1000 ms

* Voltage Change _< 0.8 Volts per second

3.3.1.4 Cruise Control Environment We use SADT ala Eickmeier (12) to

enhance the visualization of the R-Spec. The stdte machine description does not overtly

show us what the inputs and outputs of the state machine are. As Zave and Jackson point

out, we must express this information in a form that can be easily understood by users

and developers (42:87). The SADT diagram in Figure 13 depicts the cruise control in its

environment.

3.3.2 A Lift Controller System We have several reasons for choosing the lift con-

troller system as a second example to illustrate our methodology. First, the lift system

43

AUTHOR: Frank Young DATE: 10-21.92 READER:

PROJECT: Cruise Control REV: 1.0 DATE:

In-Top-Gear
Braking

Engine-Running

Deactivate

Start-Acceleration

Stop-Acceleration
Activate

Resunme

Curnent-Speed
Cruise Control Actuator-Vokage

Acceleration

NODE: A0 TITLE: Cruise Control NUMBER:

Figure 13. Cruise Control in the Environment

problem is larger than the cruise control. It tests the ability of our method to accommodate

a larger design, and our ability to model instantiations of an arbitrary number of identical

objects. Recall from Section 2.2.2 that one of the problems associated with STATEM-

ATE is its inability to deal with multiple instantiations of identical state machines. In

our example we deal with lifts as opposed to bank teller machines (34:54). Additional

types of timing constraints is the second reason for choosing the lift controller problem. In

addition to the types of timing constraints in the cruise control problem, the lift controller

includes response-response and average-response-time timing constraints. It also includes

both a minimum and maximum stimulus-response time constraint. Another reason we

use the lift controller system, is that we have have more than one study to compare with;

for example, Douglas (10), Eickmeier (12), and Spicer (36) implemented simulations of lift

control systems here at AFIT. Yourdon (40) and Wood (39) include published lift controller

studies.

44

3.3.2.1 Lift Controller Problem Statement The Lift controller schedules and

controls one or more lifts in a multi-story building. We use the basic Lift Control System

problem statement from Eickmeier: (12:82-83).

1. Each lift has a set of buttons, one for each floor. These illuminate when
pressed and cause the lift to visit the corresponding floor. The illumination
is cancelled when the corresponding floor is visited by the lift.

2. Each floor has two buttons (except ground and top floor), one to request
an up-lift and one to request a down-lift. These buttons illuminate when
pressed. The illumination is cancelled when a lift visits a floor and is either
moving in the desired direction, or has no outstanding requests. In the
latter case, if both floor request buttons are pressed, only one should be
cancelled. The algorithm to decide which to service first should minimize
the waiting time for both requests.

3. When a lift has no requests to service, it should remain at its final desti-
nation with its doors closed and await further requests....

4. All requests for lifts from floors must be serviced eventually, with all floors
given equal priority....

5. All requests for floors within lifts must be serviced eventually, with floors
being serviced sequentially in the direction of travel....

6. Each lift has an emergency button which, when pressed causes a warn-
ing signal to be sent to the site manager. The lift is then deemed 'out
of service'. Each lift has a mechanism to cancel its 'out of service' sta-
tus (12:83).

We augment Eickmeier's problem description with two behavioral requirements from

Yourdon's elevator problem, since it is our intention to specify a lift controller, not a lift

system (i.e., lift controller, lifts, doors, motors...).

1. Each lift is connected to a floor sensor. The floor sensor indicates which floor the lift

is at. It also indicates when the lift is between floors (40:633).

2. Each lift is connected to a motor. The motor can move the lift up, down or stop the

lift (40:633-634).

As discussed in Yourdon, we assume the lift mechanism does not obey unsafe

commands (40:634). Specifically, we don't worry about stopping the lift exactly at floor

45

level, or making sure doors are closed before we send a command to turn on the motor. We

assume that the manufacturer's electromechanical door and motor controls are interfaced

such that the safety requirements are met. For example, if the lift controller turns on the

lift motor while the doors are open, the lift will not actually move until the doors are

closed.

Timing constraints are missing from Eickmeier's specification. We augment the lift

specification with the following timing constraints; some are adapted from March's The-

sis (27), and we generate others to illustrate the different types of constraints.

1. The lift controller must turn on destination lights and summons lights within 100

milliseconds after a destination or summons button is pressed (27:A-25).

2. The lift controller must turn off destination lights and summons lights within 100

milliseconds after a summons or destination request is satisfied (27:A-24-A-25).

3. A lift must wait between 3 and 5 seconds after it turns the motor off before it turns

the motor on again (27:A-25).

4. After a lift has been summoned to a floor, the lift must wait at least 10 seconds

before it changes directions when no destination buttons are pressed.

5. The lift controller must stop the lift within 100 milliseconds after the lift's emergency

button is pressed when the lift is at any floor.

6. The average response time to summons requests should be less than 20 seconds (27:A-

24).

We summarize lift controller timing constraints in Table 3.

3.3.2.2 Lift Controller Environment Like the cruise control, we use SADT to

enhance the visualization of the lift controller R-Spec. The SADT diagram in Figure 14

depicts the lift control system in its environment. The terms Dest-Buttons and Dest-Lights

designate the bu s/lights internal to the lift. The terms Up-Buttons, Down-Buttons and

Up-Lights, Down-Lights designate the summons buttons and lights on each floor.

46

Table 3. Lift Controller Timing Constraints

Constraint Response Time

Light-On-Time-Limit 100 ms
Light-Off-Time-Limit 100 ms
Min-Wait-Time 3 sec
Wait-Time-Limit 5 sec
Timeout-Timer-Duration 10 sec
Emergency-Stop-Time-Limit 100 ms
Average-Response-Limit 20 sec

AUTHOR: Frank Young DATE: 10-22-°92 READER:
PROJECT: Liff-Conroler REV: 1.0 DATE:

Dos-BuA"

Eawgw•cy-8U2lo

Lift- Do"U•, t

Controller o.-ug,

NODE: AO TrrLE: Uft Controller NUMBER:.--

Figure 14. Lift Control in the Environment

47

In order to illustrate the power of our methodology to handle an arbitrary number

of identical objects, we break the lift controller down into two activities, schedule-lifts and

lift. When we want to specify an architecture connecting two or more state machines

or other activities together, we use SADT to specify the connecting details. The SADT

diagram in Figure 15 depicts the lift control system broken down into these activities. In

AUTHOR: Frank Young DATE: 11-10-92 READER: I
PROJECT: Lift-Controller REV 1.1 DATE:

-------- Up-Bunonm

',, •/ ' l Down-Button

Up-Lighis

Schedule w-ga 6

NODE: TT LCo-lle Bre w N-BERm

SLiftsl

NOEt l TTE itCnrle Breadw N...'•UMBER:

Figure 15. Lift Controller Activities

Figure 15 we represent multiple lift activities by showing the inputs and outputs of two

lifts. We show the inputs and outputs for the second lift as dashed lines in Figure 15. Each

lift object is identical, and the number of lifts is not limited to two.

In Figure 15 Summons represents a unique set of summons requests for each lift and

Outstanding-Requests is the set of summons requests for all lifts.

3.4 Summary

Two significant supporting activities we must accomplish to fulfill our research ob-

jectives are:

e Augment Reacto with timing.

48

* Define Reacto to VHDL mapping and translation process.

In support of our objective we define a methodology incorporating the following

steps:

1. Augment Reacto with timing.

2. Generate Formal R-Spec from informal requirements.

3. Verify R-Specs with Reacto Verifier, make R-Spec corrections.

4. Simulate R-Specs, make R-Spec corrections.

5. Define Reacto to VHDL mapping and translation process.

6. Apply transformation to convert R-Specs to V-Specs.

7. Simulate V-Specs, examine timing in detail, make R-Spec and V-Spec corrections.

We have two sample problems that we will use to demonstrate our methodology,

first, a fairly simple cruise control, and second, a more complex lift controller system.

49

IV. Modeling Time and Applying Reacto

Our stated objective is to investigate the feasibility, benefits and problems associ-

ated with formalizing, validating, and verifying real-time SRSs using Reacto and VHDL.

In Chapter III we defined a methodology for accomplishing that objective, identified some

significant supporting activities, and introduced two example problems to illustrate the

methodology. In this chapter we narrate accomplishing that objective by describing the

Modeling Timing Requirements in Reacto supporting activity and applying Reacto to the

the two example problems. We begin by describing the modeling-time-in-Reacto support-

ing activity.

4.1 Modeling Timing Requirements in Reacto

There are certain augmentations that are absolutely necessary to successfully model

temporal behavior in Reacto and other augmentations which could improve our ability to

model it. First, we describe the augmentations we implement in Section 4.1.1, then we

show a very simple example in Section 4.1.2. Finally, we discuss augmentations to consider

for implementation in Section 4.1.3.

4.1.1 Reacto Augmentations to Implement In order to model and measure time,

we define a means to track and quantify time by declaring a global variable, clock, of type

integer. We call one time unit simulation granularity. For the purpose of our cruise control

and lift systems we establish a simulation granularity of one millisecond because that is

the smallest unit of time we want to specify. To model a microprocessor, we might use

a nanosecond, femtosecond, or picosecond; to model the solar system we might choose a

day, month, year, or century. The point is, we choose a small enough time value to allow

meaningful examination of system behavior.

Along with clock, we need to express time constraints. We declare constants of type

integer in the auxiliary file to represent constraints. We call maximum stimulus-response

constraints time limits and minimum stimulus-response constraints rain times. We call

response-response constraints durations.

50

Additionally, we need some means to express the amount of time work takes. We

define work as follows: If X is an input to our FSM, and the output is some function of

X, i.e. Y(X), work is the effort required to produce Y(X). And, the time work takes is the

delay between X changing and the responding change in Y(X) 1. We use transition delay

to express the amount of time the work assigned to a transition takes. Like the clock and

constraints, we declare transition delays as constants of type integer in the auxiliary file.

We increment the clock by the transition delay as the transition executes to model time

passing.

Next, we define a means to validate that the FSM behavior does in fact meet the

stimulus-response time constraints. We could use error states and error transitions to the

error states to verify FSM behavior as described in Section 2.1.2, but by using Reacto asser-

tions, we can discover inappropriate temporal behavior without the error states. To do so,

we need a means to mark the time that events occur. We mark the time that events occur

with start time logs. We declare start time logs as variables of type integer in the auxiliary

file. We use start time logs to measure stimulus-response time constraints. Initially, we

reset start time logs to either Max-Time-Reset or Min-Time-Reset 2 depending on whether

we use them to verify a maximum or minimum time stimulus-response constraint. A timing

constraint with both a minimum and maximum constraint requires separate timers, since

timer reset values are different for minimum and maximum constraint timers. A transition

uses start time logs to log the time when it starts responding to an event. As the transition

executes, it updates the clock by its delay. After the transition moves the FSM to the next

state, Reacto executes the state assertion and notifies us if the transition failed to meet

the time constraint. Figure 16 shows the general form of a Reacto assertion to check a

stimulus-response time constraint (on X) with both a minimum and maximum constraint.

In Figure 16, Min-X-Start-Time and Max-X-Start-Time are start time log variables, and

Min-X-Time and X-Time-Limit are the minimum and maximum constraint constants.

Next, as discussed in Section 2.1.2, we need some means to model response-response

timing constraints. Response-response constraints always generate a transition whose pred-

'If Y(X) is not a bijection, the responding change may be the same as the previous value of Y(X).
2 Max-Time-Reset is a very large integer, and Min-Time-Reset is a very small (negative) integer.

51

I assertion Clock - Min-X-Start-Time >- Min-X-Time & I
Clock - Max-X-Start-Time <= X-Time-Limit

Figure 16. Reacto Timing Constraint Assertion

icate involves a time value (see Figure 17). We use timers and durations to model response-

response time constraints. Timers are the means by which we measure the time between

response-response events. Similar to start time logs, we declare timers as variables of type

integer in the auxiliary file and initialize them to Max-Time-Reset. As transitions per-

form behavior subject to a response-response constraint, they set timers. Reacto examines

transition predicates of the form illustrated in Figure 17 (sensitive to response-response

constraint X) and executes the response-response sensitive transition when the predicate

is true. In Figure 17, X-Timer-Duration is X's response-response time constraint constant,

and X-Timer is the timer variable.

Specifiers must consider when to reset start time logs and timers. Generally, they

should be reset when a transition is taken from a state after they are used in a state

assertion or used to meet a response-response time constraint, but they may apply to a

group of states or a group of transitions accomplishing some constrained behavior, and

should remain set for two or more transitions. We reset timers and logs with Max-Time-

Reset or Min-Time-Reset to indicate that we are finished evaluating whether or not the

constraint is met, or we can reset them with the current clock value if the currently

executing transition is also subject to the same time constraint. It ultimately depends on

the behavior we are trying to specify.

Have we described all we need to model the timing constraints of systems? We can

specify stimulus-response and response-response timing constraints. But can we model

predicate Clock - X-Timer-Duration >= X-Timer

Figure 17. Reacto Timer Sensitive Predicate

52

them correctly? Specifically, does our Reacto model support modeling systems with

response-response constraints correctly? If we specify a response-response constraint, and

our system reaches a steady state (no transition predicates are true) after we have set the

timer, how does time advance to the time when the timer goes off'? To solve this problem,

we add one more transition to every FSM. The wait transition as shown in Figure 18, is the

lowest priority transition, and it is a history transition effective in all states. Wait's predi-

cate is "true" so it always executes when no other transition predicate evaluates to "true".

As the lowest priority transition, wait executes only when no other transition predicates

wait

Most-Abstract-State

Figure 18. Reacto Wait Transition

are true. Wait's functions are to get input and update the system clock. Additionally, it

resets timers as specified by the engineer to avoid time constraint assertion errors for as-

sertions that have already been verified. We set the constant Wait-Time-Step to establish

how much the wait transition updates the clock as it runs. We determine Wait-Time-Step

based on the requirements we have for time passing, usually it is some even divisor of the

response-response timing constraints.

3 Remember- Transition execution is the only means to increment the clock.

53

This completes our definition of temporal augmentations we implement in Reacto.

We review them by examining a simple example.

4.1.'9 Relay Augmentation Example Suppose we are modeling a relay switch, with

two states On and Off, as depicted in Figure 19.

Wait

Relay Turn-On

SOff On

Turn-Off

Figure 19. Reacto Relay FSM

Assume that the relay has two inputs, an On-Button and an Off-Button, and a single

output Power, all of which we model as booleans initialized to false. Also assume that the

switch is constrained to turn on or turn off within 1 second of an On-Button or Off-Button

press respectively. So, we have two stimulus-response constraints, On-Time-Limit and

Off-Time-Limit, both set to 1 second. We declare two start time logs, On-Start-Time and

Off-Start-Time to log On-Button and Off-Button event times. We set Tmrn-On and Turn-

Off delays to their constraint values, 1 second. The assertions, predicates and actions of

our FSM are shown in Figure 20. Let us walk through a scenario, turning the relay on and

off as depicted in Figure 21, a scenario timing diagram. Initially, time is 0 seconds, the

relay is in the Off state, and both buttons are false. The Relay FSM is in a steady state, no

54

Off assertion : Power = false and
Clock - Off-Start-Time <= Off-Time-Limit

On assertion : Power = Tri-e and
Clock - On-Start-Time <= On-Time-Limit

Turn-Off predicate : Off-Button = true
action : On-Start-Time <- Max-Time-Reset;

Off-S t art-Time <- Clock;
Clock <- Clock + Turn-Off-Delay;
Power <- false;

get-input

Turn-On predicate : On-Button = true
action : Off-Start-Time <- Max-Time-Reset;

On-Start-Time <- Clock;
Clock <- Clock + Turn-On-Delay;
Power <- true;

get-input

Figure 20. Reacto Relay Assertions, Predicates, and Actions

transition predicates are true except for the wait transition, so Wait executes. First, Wait

resets the two start time logs On-Time-Limit and Off-Time-Limit to Max-Time-Reset.

Second, Wait updates the time from 0 seconds to 1 second. Finally, Wait provides an

opportunity to input events. The get-input function tells us that at time 1 second, Power

is false, so we set On-Button to true. As Wait finishes executing, Reacto evaluates the Off

assertion, which is true.

On-Button -_-----
Off-Button _-_

Power

State Off njfI On ---- On T f
Time(sec) 0 1 2 3 4 5 6 7 8 9 .. 18 19 20 21 22 23

Figure 21. Relay Scenario Timing Diagram

55

Now, the time is 1 second, and Turn-On predicate is true, so transition Turn-On is

executed. First, Turn-On resets Off-Start-Time to Max-Time-Reset, and On-Start-Time

to Clock (currently Clock is 1 second). Next it increments the Clock adding its delay, so

the time is now 2 seconds. Then it turns on the relay by setting Power crue. Finally, it

calls get-input which tells us that Power is now true, and we set On-Button to false. Now,

as Turn-On finishes executing, Reacto evaluates the On assertion, which is true.

Once again, the only predicate that is true is Wait's. Wait resets the start time logs,

increments the Clock to 3 seconds, and this time, we set Off-Button true. As Wait finishes

executing, Reacto reevaluates the On assertion, which is true.

Now, the time is 3 seconds, Turn-Off's predicate is true, and Turn-Off is executed.

First, Turn-Off resets On-Start-Time to Max-Time-Reset, and Off-Start-Time to Clock

(currently Clock is 3 seconds). Next it increments the Clock adding its delay, so the time

is now 4 seconds. Then it turns off the relay by setting Power false. Finally, it calls

get-input which tells us that Power is now false, and we set Off-Button to false. Now, as

Turn-On finishes executing, Reacto evaluates the Off assertion, which is true.

Let's complicate our example by adding a response-response constraint. Assume that

the equipment controlled by our relay cannot be on for more than 15 seconds. This means

that Relay must turn itself off automatically 15 seconds after it turns on. We add a timer

On- Timer initialized to Max-Time-Reset, and specify the response-response constraint in

the constant On-Timer-Duration, setting it to 15. We modify Turn-Off's predicate to read:

Off-Button = true or Clock - On-Timer-Duration >= On-Timer

Now, time is 4 seconds, the relay is in the Off state, and both buttons are false.

The Relay FSM is in a steady state, no transition predicates are true except for the wait

transition, so Wait executes. First, Wait resets the two start time logs On-Time-Limit and

Off-Time-Limit to Max-Time-Reset. Second, Wait updates the time from 4 seconds to 5

seconds. Finally, Wait provides an opportunity to input events. The get-input function

tells us that at time 5 seconds, Power is false, so we set On-Button to true. As Wait

finishes executing, Reacto evaluates the Off assertion, which is true.

56

Now, the time is 5 seconds, and Turn-On predicate is true, so transition Turn-On

is executed. First, Turn-On resets Off-Start-Time to Max-Time-Reset, and sets both On-

Start-Time and On-Timer to Clock (currently Clock is 5 seconds). Next it increments the

Clock adding its delay, so the time is now 6 seconds. Then it turns on the relay by setting

Power true. Finallý, it calls get-input which tells us that Power is true at 6 seconds, and

we set On-Button to false. Now, as Turn-On finishes executing, Reacto evaluates the On

assertion, which is true.

Once again, the only predicate that is true is Wait's. Wait resets the start time logs,

increments the Clock to 7 seconds, and this time, we input no events. As Wait finishes

executing, Reacto reevaluates the On assertion, which is true. As long as we input no more

events, Wait executes repeatedly, telling us the current time and that Power is true, giving

us the opportunity to input more events, and adding 1 second to the clock. Each time,

Reacto evaluates the On-State assertion which is always true. Finally, when Clock equals

19 seconds, wait executes one more time incrementing the Clock to 20 seconds.

Now, Turn-Off's new predicate, Clock - On-Timer-Duration > On-Timer, is true

(20 - 15 >= 5) and Turn-Off is executed. First, Turn-Off resets On-Start-Time and On-

Timer to Max-Time-Reset, and Off-Start-Time to Clock (currently Clock is 20 seconds).

Next it increments the Clock adding its delay, so the time is now 21 seconds. Then it

turns off the relay by setting Power false. Finally, it calls get-input which tells us that

Power is false at 21 seconds. Now, as Turn-Off finishes executing, Reacto evaluates the Off

assertion, which is true.

This completes our definition of temporal augmentations we implement in Reacto,

and a review of them via a simple example. Now, let us discuss augmentations we do not

implement and justify our decision not to implement them.

4.1.3 Reacto Augmentations to Consider In the previous section we define all of

the time extensions we use to model our sample problems, and provide a simple example

using them, but we know that there are more augmentations possible to improve modeling

time constraints in Reacto.

57

For example, updating the clock by the transition delay prohibits us from modeling

events occurring in the time interval between transition a's update of the clock, ti, and the

transition b's update of the clock, t2. Figure 22 illustrates this problem. We call events

Transition- B- Delay TimeF m- Time

ti ta t2

Figure 22. Asynchronous Event

occurring between times t1 and t2 (e.g., event A occurring at time ta) asynchronous events.

When we model event A, we must inject it into the simulation at either tl or t2. Therefore,

our methodology constrains us to model events at times dictated by transition delays.

One way to model asynchronous events in Reacto is to specify intermediate states

between actual states, and specify a New- Wait transition with an arbitrarily short delay to

pass the time between those states as depicted in Figure 23. This solution requires tran-

Event a II set timer dock - timer >= delay II perform work

Legend:

predicate #work

-- Jclock - timer -= delay fl dock <- clock + shorter-delay

Figure 23. Reacto Asynchronous Event Solution

sitions from the intermediate states to all of the other states (actually other intermediate

states) which are reachable from state A, exponentially exploding the number of states

and transitions. Those intermediate states and extra transitions are not intuitively part

of the SRS, but create an R-Spec specifically tailored to solve the asynchronous events

problem within our Reacto methodology. The intermediate states and extra transitions

greatly complicate the spec and reduce our ability to understand and manage it.

58

Another way to fix this asynchronous event problem is to create a true event driven

simulation. Since Reacto currently limits us to expressing behavior via transition actions

only, such a task is complicated. It requires some means to schedule and cancel events, as

well as a more sophisticated clock than we have currently described. We have two reasons

for not attempting to implement event driven simulation in Reacto. First, we assert that

implementing an event driven simulation could be accomplished much easier by modifying

the Reacto simulator than by trying to modify the FSM we are specifying. We consider

the modification of the source code out of the scope of this thesis. Second, VHDL already

provides event driven simulation, and allows us to examine the affects of asynchronous

events without modifying the Reacto simulator or Reacto specifications.

While either the intermediate state or event driven proposals could allow us to investi-

gate asynchronous events, we assert that either modification we can undertake complicates

R-Specs considerably. We resist the urge to improve Reacto's simulation capabilities by

modifying the state machine at the expense of the specifications clarity and meaning. And,

we leave intermediate states and more complicated event driven simulation out.

In comparison, we consider the Wait transition (described in Section 4.1.1) a neces-

sary R-Spec complication since we cannot think of a better way to model response-response

constraints correctly. We propose other enhancements to improve Reacto's capabilities

without affecting the specifications clarity and meaning in Section 8.2.1.

There are undoubtedly more complicated systems than our example systems which

may force us to make extensions to the Reacto model. As it is, our Reacto FSM as we

have defined it is a "filing cabinet" allowing us to organize the theoretical process model

as described in Levi and Agrawala (25:85). In our Mealy machine model, each transition

represents a process. Computation time is transition delay. Begin constraint is the time

the transition predicate becomes true. Process period is the highest frequency of events

the transition is expected to respond to. Process deadline is defined by the start time plus

the time constraint the transition is meeting. Now, we turn our attention to illustrating

the Reacto extensions we have defined with our example problems.

59

4.2 Applying Reacto

We now demonstrate the Reacto portion of our methodology with the example prob-

lems. The complete Reacto source code for the cruise control and lift controller problems

is contained in Volume II of this thesis4 . We use sections of the code throughout this

discussion, but we invite the reader to use Volume II for clarification.

We break applying Reacto down into three activities and the basic steps to accomplish

each activity:

1. Build the abstract FSM.

(a) Create FSM states.

(b) Create FSM transitions.

2. Specify FSM behavior.

(a) Define constraints and transition delays.

(b) Define special data types.

(c) Define input and output variables.

(d) Write the get-input function.

(e) Write state assertions.

(f) Define transition behavior to satisfy State Assertions.

3. Verify and Validate FSM.

(a) Compile and Verify the R-Spec, and make corrections.

(b) Simulate the R-Spec, and make corrections.

We use Reacto's graphical editor to build the abstract FSM, then we use the graphi-

cal editor or text editor to fill in the underlying behavioral details of the FSM, and finally

4Volume II is available from the Air Force Institute of Technology, School of Engineering, at Wright-
Patterson AFB, Ohio 45433-5000. Contact Major Kim Kanzaki at (513) 255-3708 to request a copy.

60

we examine and modify the FSM until it is an accurate formal specification of the behav-

ior implied by the written English problem description. In the following paragraphs we

describe each activities basic steps by applying each step to either the cruise control or lift

controller problem.

4.2.1 Build the abstract FSM The first step in creating the R-Spec is to use the

behavioral description from the informal specification to hierarchically define the states

of the system from the most abstract to the most detailed. Figure 24 depicts our Reacto

cruise control FSM states. The most abstract state is Cruise-Control. Within Cruise-

Cruise-Control

On

Active

L1~~~I]Accelerating

Figure 24. Reacto Cruise Control FSM States

Control the primitive default state Off and the superstate On states are the next most

abstract. Within the On state, the system may be either Active or Idle. Finally at the

lowest level of abstraction, the cruise control may be in the Cruise or Accelerating primitive

states. The darkened-in V7 symbol marks the default states.

The next step is to define a set of transitions on the states. The Transitions are

the means to specify action in the Reacto model, and we assign them to accomplish the

behavior described in the informal specification. Figure 25 depicts our Reacto cruise control

FSM without its wait transition.

61

Cruise-Control

Off
Shu 7pdSlarP

C-Vo t'g-Low A-Voltage-Low

Figure 25. Reacto Cruise Control FSM

4.2.2 Specify FSM Behavior The Iirst s~tep to specify the details of FSM behavior

is to define the system constraints and to associate transitions with those time constraints.

When we specify transitions to accomplish time constrained behavior we must associate

that behavior with the correct time constraint from the specification. Cruise control timing

constraints are literaily spelled out in Chapter III, Table 2, and are easily mapped to

declarations in the cruise-control-auxiliary.re file as shown in Figure 26.

constant Start-Cruising-Time-Limit :integer = 500
constant Start-Accelerating-Time-Limit :integer = 500
constant Stop-Accelrating-Time-Limit integer = 500
constant Idle-Time-Limit :integer = 500

constant Turn-Off-Time-Limit :integer = 500
constant Speed-Change-Time-Limit :integer = 1000
constant Acceleration-Change-Time-Limit integer = 1000
constant Max-Volt-Change-Per-ms real = 0.8/1000.0

Figure 26. Reacto Cruise Control Timing Constraints

62

Consider transition Startup in Figure 25; Startup turns on the cruise control under

the conditions specified in the informal specification, and must meet the first time con-

straint from Chapter III, Table 2. Startup's delay is associated with that constraint by

the following Reacto auxiliary file constant declaration:

constant Startup-Delay : integer = Start-Cruising-Time-Limit

Startup moves the Cruise Control from the Off state to the On state within 500 milliseconds

(ms). Since On state's default state is Active, and Active's default state is Cruise, Startup

moves the cruise control to the primitive state Cruise.

As shown with Startup, we initially set the delay of all transitions accomplishing time

constrained work at the maximum allowed by the constraint. We use the maximum allowed

by the constraint understanding that if maximum timing constraints are not violated under

maximum delays, they are also satisfied by shorter delays5 . If there are dependencies

between transitions (two transitions interfere with each other such that they fail to meet

time constraints) we may modify the delays such that time constraints are not violated

thus pointing out transition dependencies. For transitions accomplishing work that is not

time constrained, we set their delays to the simulation granularity, which for the cruise

control is one millisecond. This allows us to detect dependencies between constrained and

unconstrained transitions, modeling the fact that in the real world, all work takes time.

The next step is to define special6 data types. Since the cruise control uses only inte-

ger, real and boolean data types, we define no special data types for it. In the lift problem

however, we used special data types as shown in Figure 27. In Figure 27 types symbol,

set, seq, and tuple are predefined Refine data types. Refine symbols correspond to natural

language names (30:3-40), and they hold values like 'Up or 'Down. They are similar to

VHDL's enumerated data types, except symbols can hold elements that are not predefined

in some list. A Refine set is a finite, unordered, non-repeating collection of homogeneous

elements (30:3-56). A Refine seq ("sequence"), is a totally ordered collection of homoge-

neous, possibly repeated elements (30:3-77). A Refine tuple is a finite, ordered collection

5Delays may not be less than any applicable minimum constraint.
6Ordinary data types are integer, real, or boolean.

63

type Lift-State-Type = symbol
type Motor-Control-Type = symbol
type Direction-Type = symbol
type Floor-Set-Type = set(integer)
type Destination-Type = seq(boolean)
type Summons-Type = tuple(Floor : integer,

Direction : Direction-Type)
type Summons-Set-Type = set(Summons-Type)
type Status-Type = tuple(State : Lift-State-Type,

Floor : integer,
Direction : Direction-Type)

type Status-List = seq(Status-Type)
type Summons-List = seq(Summons-Set-Type)
type Lift-Set-Type = set(integer)
type Log-Type = seq(integer)

Figure 27. Reacto Lift Special Data Types

of heterogeneous elements (30:3-107). Tuples are like records in typical programming lan-

guages. We define these special data types in a special source file, lift-types.re because the

two R-Specs of the lift controller problem (lift and schedule-lifts) both use them. Putting

the type declarations in a common file for both R-Specs insures they can communicate

with each other using these types in VHDL.

The next step to applying Reacto is to declare global variables in the auxiliary file

representing each FSM input and output. This is readily accomplished by referencing the

FSM's SADT diagram. For example, Figure 28 shows the cruise control inputs and outputs

corresponding to those illustrated earlier in Chapter III, Figure 13.

We do not use Reacto interface variables because interface variables make the map-

ping to VHDL harder. Using global variables allows us to implement transition predicates

orthogonally in Reacto and VHDL. A mapping in VHDL for Reacto's empty-interface-

variable?(x) predicate is difficult to conceive because VHDL signals always have a value.

In Reacto, if we attempt to read an empty interface variable which has a defined producer

function, the simulator automatically calls the producer function to get a value. In VHDL,

signal values are updated under the control of the writer process and the system clock, not

64

%% Inputs
var ACCELERATION : real = 0.0
var ACTIVATE : boolean = false
var BRAKING : boolean = false
var CURRENT-SPEED : real = 0.0
var DEACTIVATE : boolean = false
var ENGINE-RUNNING : boolean = false
var IN-TOP-GEAR : boolean = false
var RESUME : boolean = false
var STOP-ACCELERATION : boolean = false
var START-ACCELERATION : boolean = false

U./. Outputs
var ACTUATOR-VOLTAGE real = 0.0

Figure 28. Reacto Cruise Control I/O

the reader process. In Reacto, input is controlled by the reader, hence we define our inputs

as global variables and write a special get-input function to provide a clearer mapping to

VHDL.

The next step is to create a get-input function in the auxiliary file. The get-input

function works with the Reacto simulator. It drives the inputs, and reports the outputs in

the Reacto-Emacs window during simulation. Figure 29 is part of the Reacto source code

for the cruise control's get-input function augmented with line numbers for the following

discussion. The format function called in line 4 outputs the current time and the value of

the cruise control output Actuator- Voltage. The while loop (lines 6 through 16) repeatedly

asks for an input variable name or simulation control command until the simulator inputs

a null string or "go". The if statement (lines 8 through 16) determines what name or

command is input each iteration, and performs the appropriate action. It calls input

functions to get new input values, and other functions to control the simulation- e.g,.

"mode" tells the simulator to toggle from the interactive to file simulation and visa versa.

As the simulator changes input values, get-input echoes the current simulation time, and

the new input value, producing a log of simulation events. Get-input allows us to update

none, any, or all of the system inputs every time it is called. Our implementation of get-

input also allows us to input from a text file and output to a text file. To allow input

65

I function get-input() =
2 let (V-Name: string = "none")
3 % DISPLAY OUTPUT
4 format(t, "D ms Voltage = D.lf.",Clock,Actuator-Voltage);
5 % UPDATE INPUT
6 (while V-Name "= "" do
7 V-Name <- Read-String("Input name, mode, shut-off, ? or <cr>");
8 (if V-Name = "acceleration" then
9 ACCELERATION <- Read-Real("New Acceleration?");
10 format(t, "D ms acceleration = -D-%.",Clock,acceleration)
11 elseif V-Name = "activate" then
12 ACTIVATE <- Read-Boolean("Activate?");
13 format(t, "D ms activate = "A'.",Clock,activate)

15 else

16 format(t, "**-A**-%", V-Name))) % Echoes noninteractive inputs

Figure 29. Reacto Cruise Control Get-Input Function Source Code

events after every transition, we include a call to get-input as the last statement in every

transition action.

The next step in applying Reacto is to write state assertions for each state describing

what we want to be true about the system in each state. Figure 30 is the Reacto source

code for the cruise control's Off state. In addition to the assertion concerning the Turn-

the-state Of f
assertion Actuator-Voltage = 0.0 &

IClock - Turn-Off-Start-Time <= Turn-Off-Time-Limit

Figure 30. Reacto Cruise Control Off State Source Code

Off-Time-Limit time constraint, the Statement Actuator- Voltage = 0.0 corresponds to

Requirement R4 in the original cruise control informal specification from Section 3.3.1.2.

The more requirements we express in these assertions, the more we verify about our R-

Spec. Reacto's verifier and simulator detect R-Spec errors using these assertions. They

point out when and where the R-Spec fails, enabling us to improve the R-Spec accordingly.

66

We recommend setting assertions for states with no assertions "true", to avoid problems

with verification failing.

The next step is to fill in the details of transition behavior which makes the state as-

sertions true. Figure 31 is the Reacto source code for the cruise control's Startup transition

augmented with line numbers to aid in our discussion. We write transitions conforming to

1 "Startup"
2 a-transition off-transition-1 from Off to On
3 predicate Activate & Current-Speed >= the-real(30.O)
4 & In-Top-Gear & -Braking & Engine-Running & -Deactivate
5 action Start-Cruising-Start-Time 4- Clock;
6 Turn-Off-Start-Time <- Start-Time-Reset;
7 Clock <- Clock + Startup-Delay;
8 Old-Speed <- Current-Speed;
9 Target-Speed <- Current-Speed;
10 Cruise-Voltage <- Get-Cruise-Voltage(Target-Speed,
11 Current-Speed);
12 Actuator-Voltage <-
13 Cruise-Voltage
14 Min (Max-Volt-Change-Per-ms * Startup-Delay);
15 Get-Input()
16 priority 20

Figure 31. Reacto Cruise Control Startup Transition Source Code

the following template (line numbers are shown in Figure 31):

1. Transition Label (line 1).

2. Transition Name and from, to states(line 2).

3. Predicate (lines 3-4).

4. Action (lines 5-15)

"* Set and reset start time logs (lines 5-6).

"* Update clock (line 7).

"* Transition "work" (lines 8-14).

"* Call get-input (line 15).

5. Transition Priority (line 16).

67

We must fill in the transition predicate (lines 3 and 4) and the actual transition

behavior (lines 8 through 14) to meet the behavioral requirements of the informal speci-

fication. Startup starts the cruise conarol up when the user presses the Activate button

and the other conditions defined by the predicate are true. To start the cruise control,

Startup calls the function Get-Cruise-Voltage (line 10) which we define in the auxiliary

file. Get-Cruise-Voltage returns the voltage that the cruise control should be at to correct

any difference between the Target-Speed and Current-Speed. Since the cruise control is

constrained not to increase voltage more than 0.8 volts per second, Startup uses the prede-

fined lisp operator min (line 14) to set the output voltage to either the calculated voltage,

or the voltage increase allowed by Startup-Delay. Min has two arguments, Cruise- Voltage

on line 13, and the arithmetic expression on line 14.

When we specify behavior it is important to consider whether or not to use Refine's

higher level abstractions like transforms, maps, sets and quantification on those sets in the

R-Spec. Although these abstractions are quite powerful, there is a cost associated with the

transformation to VHDL since VHDL is a procedural language without these abstractions.

In the simpler cruise control problem, we use only procedural Refine stdtements, and the

transformation process is straight forward. In the lift controller problem however, we use

sets and quantification forcing us to define set types and operations on those types in VHDL

making the transformation process more complicated. For this reason, we encoiirage the

use of procedural Reacto statements where practical.

Finally, we establish the transition priority (line 16) based on what the informal

specification requirements say about the priority of the work we are accomplishing. We

recommend changing each transition's priority' to a unique number greater than zero to

avoid inconsistency problems between the VHDL and Reacto siimulation behavior. Reacto

executes transitions of equal priority based on their order in the Refine knowledge base

when their predicates are simultaneously true. Since we do not necessarily know what

knowledge-base order they are in during our manual translation process, we may uninten-

tionally define the order differently in VHDL. Reacto creates lines 1 and 2 when we save

the R-Spec file after we create the graphical FSM.

7Default priority is zero.

68

4.2.3 Verify and Validate FSM The first step of the Verify and Validate FSM

behavior activity is to compile and verify the R-Spec, and make any necessary corrections

in transitions and state assertions. We refer the reader to the Reacto User's Manual (23)

and Reacto- Verifier User's Guide (22) for specific instructions on compiling and using the

Reacto-Verifier. An in-depth discussion of the Reacto-Verifier is beyond the scope of this

thesis.

The final step in applying Reacto is to Simulate the R-Spec, examine its behavior,

and make any necessary corrections in R-Spec transitions, state assertions and auxiliary

file functions. During this step, we "Copy Assertions in the Focussed Spec to Runtime

Checksa" prior to running the simulation, so that in addition to verifying the assertions

with the Reacto-Verifier, we verify them during simulation. During initial simulation,

we manually drive the R-Spec with simple tests like those described for the Relay FSM in

Section 4.1.2, and we examine the basic behavior of the FSM. This exposes gross behavioral

errors, but is quite tedious for more complicated test cases. After we are satisfied with the

gross behavior, we create a simulation input file and use it to drive the simulation. This Is

valuable, because c 3mparing the results of subsequent simulations under the same input

conditions exposes errors caused by our "fixes" to other problems. Section 4.3 describes

our test cases. The full set of test cases are in Appendices A and B. In Section 4.4 we

describe some of the improvements we make as a result of applying Reacto and observing

test case behavior.

4.3 Reacto Test Cases

Writing, simulating, and evaluating test cases is the primary means we have to verify

and validate R-Spec behavior. In the following Sections, we describe the test cases we

use to veri- and validate the cruise control and lift-controller R-Specs. Our final R-Specs

pass all oi these tests, outputting the correct results, without failing any assertions. Since

it is a good representative test case, we include a detailed test case, simulation input,

and simulation output here for the Activation Allowed Test, and we refer the reader to

8 A Reacto Edit Option.

69

Appendix A for cruise control test details and to Appendix B for details of lift test cases.

We analyze the Activation Allowed Test output, and assert that our R-Specs satisfy similar

analysis for all of our test cases. We refer the reader to Volume II of this thesis9 for actual

Reacto inputs and results of each test case.

4.3.1 Cruise Control Test Cases

Initialization Test Initially, the cruise control shall be in an off state. Therefore, upon

startup, throttle actuator voltage shall be zero until speed is greater than 30 miles

per hour and the driver command activate is asserted. Requirement implied.

Activation Denied Test There are three phases to this test. The first phase tests that

the system shall not activate when the car is in top gear, the engine is running, but

the speed is not 30 miles per hour (mph) or more. The second phase tests that the

system shall not activate when the car's speed is 30 mph or more, the transmission

is in top gear, but the engine isn't running. The final phase tests that the system

shall not activate when the cars speed is 30 mph or more, the engine is running, but

the transmission isn't in top gear. Requirements Tested: R1, R2, R3.

Activation Allowed Test This tests that the cruise control shall activate when the en-

gine is running, the transmission is in top gear, and the speed is at least 30 mph.

Requirements Tested: R1, R2, R3, C4. Test steps:

1. Set In-Top-Gear, Engine-Running to true

2. Set Braking to false

3. Set Speed to 30 mph

4. Toggle Activate between true and false

5. Set Speed to 29 mph

6. Is Actuator-Voltage greater than 0.0 volts?

Actual test input is shown in Figure 32. Get-input echoes lines containing "****"

9 Volume II is available from the Air Force Institute of Technology, School of Engineering, at Wright-
Patterson AFB, Ohio 45433-5000. Contact Major Kim Kanzaki at (513) 255-3703 to request a copy.

70

Start Activation Allowed Test ****

in-top-gear
t
current-speed
30.00
engine-running
t
activate
t
go
activate
f
go
go
go
go
go
current-speed
29.00
go
go
go
shut-off
Stop Activation Allowed Test ****

Figure 32. Reacto Cruise Control Activation Allowed Input

71

to the simulation output file. Lines containing "go" direct the get-input function

to cease inputting events and return, allowing the FSM to complete the current

transition, evaluate state assertions, and evaluate transition predicates for the next

execution. Lines containing input variables are followed by the values to assign to

those inputs. For example, the line "current-speed" is followed by the line "30.00",

indicating that current-speed should be set to 30 mph. The lines "activate" and "t"

cause the activate input to be set to true after engine-running is set to true. When

get-input reads the line "shut-off", it calls the simulation control function Shut-Off

to turn the cruise control off in preparation for the next test.

Actual Activation Allowed Test output is shown in Figure 33. The output lines

containing "Go..." are written by the get-input function each time the simulation

file indicates it is finished inputting events for the current time. Note that get-input

logs all input and output events along with the time of each event. The output "Shut-

Off Complete" comes from the simulation control function Shut-Off which turns off

the cruise control in preparation for the next test. The reason there is no event for

the Set Braking to false step, is that it is accomplished by the Shut-Off function

during the previous test.

We must analyze this output to determine if the cruise control functions correctly.

At 6000 ms, we tell the cruise control to activate. Since the transmission is in top

gear, the speed is at least 30 miles per hour, the engine is running, and the brakes

are off, it turns on the cruise control. It turns the cruise control on 250 ms later

at 6250 ms, when the output voltage is set to 0.2 volts. It does not increase the

voltage to 4.0 volts1' immediately because this would violate the maximum allowed

voltage increase of 0.8 volts/second. Instead, every second it increases the voltage

by the amount allowed until it reaches the 4.0 volts. At 11250 ms, we change the

current speed to 29 miles per hour, and the cruise control responds by raising the

voltage to increase the speed. Once again it does it subject to the 0.8 volts/second

constraint, updating to the required 6.0 volts by 14250 ms. At 14250 ms, we shut

the cruise control off in preparation for the next test. These are the expected results,

10The engineer's algorithm says that 4.0 volts are required to maintain the current speed.

72

Start Activation Allowed Test ****

6000 ms in-top-gear = T
6000 ms current-speed = 30.0
6000 ms engine-running = T
6000 ms activate = T
Go...
6250 ms Voltage = 0.2.
6250 ms activate = NIL
Go...
7250 ms Voltage = 1.0.
Go...
8250 ms Voltage = 1.8.
Go...
9250 ms Voltage = 2.6.
Go...
10250 ms Voltage = 3.3999999.
Go...
11250 ms Voltage = 4.0.
11250 ms current-speed = 29.0
Go...
12250 ms Voltage = 4.8.
Go...
13250 ms Voltage = 5.6000004.
Go...
14250 ms Voltage = 6.0.
Shut-Off Complete
14750 ms Voltage = 0.0.
Stop Activation Allowed Test ****

Figure 33. Reacto Cruise Control Activation Allowed Output

73

and no Reacto assertions are violated, so this version of the cruise control passes the

Activation Allowed Test.

Deactivation Test This tests that the cruise control shall shut off when the driver presses

deactivate. Requirements tested: R1, R4.

Acceleration Test This tests that the cruise control shall accelerate the car when the

driver presses Start-Accelerating, and that it stops accelerating when the driver

presses Stop-Accelerating. It also tests that the acceleration shall be approximately

lmph/sec. Requirements Tested: R5, C1, C4, C5, C6, C7, C8.

Resume Test This tests that the cruise control shall resume the previous speed when the

driver presses Resume after Braking or not In-Top-Gear. Requirements Tested: R6,

R8, R10, R11, R12, C4.

Downhill Test This tests that the cruise control shall attempt to maintain the selected

speed by decreasing actuator voltage to minimum when the current speed remains

more than 2 mph above the selected speed. Requirements Tested: C2, C4.

Uphill Test This tests that the cruise control shall attempt to maintain the selected speed

by increasing actuator voltage to maximum when the current speed remains more

than 2 mph below the selected speed. Requirements Tested: C3, C4.

Other Tests The Reacto test cases Breaking During Activate Delay Test, Breaking Dur-

ing Activate Asserted Test, Breaking After Activate B4 Cruise Test, Resume during

Breaking Test, and Deactivate overlaps Resume Test are included in the Reacto test

cases, but they are asynchronous event tests, meant for use with VHDL. Figure 34

is the output from the Reacto Breaking During Activate Delay Test, and as you

can see, we input the Braking event after the cruise control activated at 104750 ms,

because we cannot input an asynchronous event between 104500 ms and 104750 ms.

4.3.2 Lift Controller Test Cases Since the lift controller is a more complicated

system", we do not show the details of an example test case like the cruise control. Instead,

"The output of the first lift test All Summons is 197 lines long.

74

**Start Breaking During Activate Delay Test **

104500 ms in-top-gear = T
104500 ms current-speed = 45.0
104500 ms engine-running = T
104500 ms activate = T
Go...
104750 ms Voltage = 0.2.
104750 ms braking = T
Go...
105000 ms Voltage = 0.0.
105000 ms activate = NIL
Go...
106000 ms Voltage = 0.0.
106000 ms braking = NIL
Go...
107000 ms Voltage = 0.0.
Shut-Off Complete
107500 ms Voltage = 0.0.
**Stop Breaking During Activate Delay Test **

Figure 34. Reacto Cruise Control Breaking During Activate Delay Test Output

75

we generally describe each test, referring you to Appendix B, where you can see every detail

of each test. In the following Section, we describe the lift test cases, and in Section 4.3.2.2,

we describe the schedule lifts test cases.

4.3.2.1 Lift Tests The following cases test the behavior of a single lift in a

four-floor building.

All Summons Test tests lift's ability to handle all Summons from every floor. In the

real world, this corresponds to people simultaneously pushing every summons button

on every floor requesting the elevator pick them up.

All Destinations Test tests lift's ability to handle people inside the lift simultaneously

pushing all destination buttons.

Emergency Button Test tests lift's response to emergency button events.

Mixed Destinations and Summons Test is a real-world scenario that tests lift's abil-

ity to handle both summons requests and destination requests together.

Timeout Test tests lift against the response-response constraint which specifies the

amount of time the lift waits for a destination in the current direction if there are no

destinations already in that direction.

4.3.2.2 Schedule Lifts Tests The following cases test the behavior of schedule

lifts when configured as a four-floor, four-lift system.

Off State Test tests schedule lifts behavior when all lifts are off.

All Summons 1 Lift Test tests schedule lifts behavior when only one lift is available to

handle summons requests from all floors in all directions.

Idle Schedule Test tests schedule lifts behavior when all elevators are available, and

only one is idle.

All Summons Test tests schedule lifts behavior when all lifts are available to handle

summons requests from all floors in all directions.

76

As with the cruise control, we analyze all test output, and assert that our final lift

and schedule-lifts R-Specs satisfy thorough analysis for all of our test cases. During the

iterative validation and verification process however, the R-Specs did not always perform

as expected, resulting in many specification improvements. We discuss examples of these

improvements in the next section.

4.4 Reacto Specification Improvements

Having described our Reacto augmentations, the application of Reacto to our ex-

ample problems, and the test cases we use to verify and validate the FSM, we turn our

attention to assessing the resulting specification improvements.

At the highest level of abstraction, the specifications for both the cruise and lift con-

trol systems are improved by simply specifying the FSM. We demonstrate this by three

examples, one for each FSM. Examining Figure 35 allows us to point out an improve-

ment made over the informal cruise control specification. The Accelerate-And-Enabled

Cruise-Control

Shupo WMP

On •R~••AdE~e

Figure 35. Reacto Cruise Control FSM

transition from Idle to Accelerating clarifies an ambiguity in the informal specification.

Requirement R5 in the informal specification states that "Start Accelerating causes the

77

system to accelerate the car at a comfortable rate until Stop Accelerating occurs, when

the system holds the car at this new speed," but it does not say if Start Accelerating has

this effect only when the car is currently cruising or if it applies when the cruise control

had been cruising but the driver momentarily hit the brakes or the transmission went out

of high gear (i.e., shall the cruise control allow acceleration from the Idle state?). Our

R-Spec FSM clarifies requirement R5 allowing Acceleration from the Cruise state via the

Accelerate transition, and from the Idle state via the Accelerate-And-Enabled transition.

Specifying the lift control system FSMs for schedule lifts and lift also clarifies am-

biguities in the lift controller informal specification. Figure 36 is the lift FSM. Eickmeier

New-Destination New-Summons

Uff

Emergency off Not-Emergency

on No-ReSqusts
Idle euetcheduled

Active
Resume

t Stopped
-[Movinig J

S~At-Sche~duled-Floor
Tim ut At-Floor

Figure 36. Reacto Lift FSM

points out that the informal lift controller specification is ambiguous with respect to lift

behavior when the emergency button is pressed (12:92). The informal specification does

not specify if the lift responds to destination buttons pressed while the emergency button is

pressed. In Figure 36 the New-Destination transition is active during all states, including

78

Off, therefore, we specify that the lift schedules destinations when destination buttons are

pressed regardless of the position of the emergency button. If we wish to specify otherwise,

we simply move the New-Destination transition inside the Lift state, making it active only

in the state On and its substates.

Similarly, the schedule lifts FSM as depicted in Figure 37 specifies that Summons but-

tons are not responded to unless there is at least one lift available12 because the Summons-

Button-Event transition is only active from the On state.

Schedule-Lifts

Summons-Button-Event Itts-Avalable

Do On Off

Status-Event

Figure 37. Reacto Schedule Lifts FSM

In addition to specification improvements made by creating the FSMs themselves,

our R-Specs clarify more ambiguities. Eickmeier pointed out two additional ambiguities

in the lift controller problem (12:92).

e Does a lift stop immediately when the emergency button is pressed, or does it travel

to the next floor before stopping?

12A lift is available if its emergency button is not pressed.

79

9 Is the door open when a lift has no summons or destination requests (i.e., the lift is

idle)? Or worded another way, must a Summons request be issued to open the door

of an idle lift?

We resolve Eickmeier's first ambiguity in the lift spec's predicate as shown in Fig-

ure 38. When the lift is at a floor, floor sensor is greater than zero, otherwise, the lift

"Emergency"
a-transition ON-TRANSITION-2 from ON to OFF
predicate Emergency-Button and Floor-Sensor > 0

Figure 38. Reacto Lift Emergency Transition Predicate

is between floors, hence we specify that the lift stops at the next available floor and not

between floors.

Although we do not explicitly model door opening and closing in our lift controller as

explained in Section 3.3.2.1, we clarify Eickmeier's second ambiguity using states Off, Idle,

and Stopped as shown in Figure 36. States Off and Stopped are states where the lift doors

are open. In an emergency, the lift is in state Off, and the doors remain open. Doors are

closed in the idle state, and when a request is scheduled, the lift transitions to the Active

state via the transition Request-Scheduled. Active's default state is Stopped. Hence we

specify that lift doors are closed when a lift has no Summons or destination requests, and

that they open upon receiving a Summons request.

Any remaining ambiguities are resolved according to the behavior specified for the

transitions and the functions we define in the auxiliary files. For example, Figure 39

shows the mathematical algorithm used to calculate the voltage that the cruise control

outputs while in state cruise in accordance with the mechanical engineer's recommendations

from (17:291). This algorithm is not included in the informal requirements. Some may

consider it a step toward implementation, but it is necessary to provide an executable

model of the requirements. Reacto provides considerable flexibility, allowing one to specify

behavior more abstractly or in greater detail. A good example of this flexibility is our

scheduling algorithm Pick-A-Lift from the schedule-lifts auxiliary file. Our Pick-A-Lift

80

function Get-Cruise-Voltage (Target real, Actual : real) real =

let(delta-speed : real = target - actual,
voltage : real = 0.0)

(if delta-speed > 2.0 then
voltage <- 8.0

elseif delta-speed >= -2.0 & delta-speed <= 2.0 then

voltage <- 2.0 * (delta-speed + 2.0)
else voltage <- 0.0);
(voltage)

Figure 39. Reacto Get-Cruise-Voltage Function

function (see lifts-auxiliary.re file in Volume II) is fairly detailed, taking approximately 72

lines of Refine statements without comments and declarations. If we wish to specify the

scheduling function more abstractly, we could used the Reacto arb (extracts an arbitrary

element from a set) function on the set of available lifts, leaving virtually all the details up

to the implementation. If we want to be more sophisticated we can enhance Pick-A-Lift

accordingly.

In the previous paragraphs, we describe some of the informal requirements ambi-

guities we resolve by specifying the FSMs and completing the details of the R-Specs.

Now we describe an example behavioral specification improvement made to the interface

between two FSMs a result of going through the process of creating and simulating the R-

Specs. Originally, our Lift and Schedule-Lifts interface included a Status-Type.Summons

as depicted in Figure 40. Originally, the Lift FSM used Status-Type.Summons to tell

Schedule-Lifts that the Lift received the Summons and added it to it's Summons schedule.

Currently, we eliminate Status-Type.Summons from the interface, and centralize Summons

scheduling in Schedule-Lifts"3 . We made this change because the Reacto simulations and

modifications to Schedule-Lifts were very complex with the Old interface. We had trouble

deciding whether the Lift should delete Summons from the Lift schedule or if Schedule-Lifts

should. After moving the function back and forth between the R-Specs twice, we realized

"13Destination scheduling is still done in Lift, since every Lift must take the people inside it to their
destination.

81

type Status-Type = tuple(State : Lift-State-Type,
Floor : integer,
Direction : Direction-Type,
Summons : Summons-Set-Type)

Old Type Definition

type Status-Type = tuple(State : Lift-State-Type,
Floor : integer,
Direction : Direction-Type)

Current Type Definition

Figure 40. Reacto Status-Type Definitions

that we had complicated the specification to the point that Lift and Schedule-Lifts were

too closely coupled. Reacto's visual simulation environment and its provision to rapidly

make these changes made it easy to discover and resolve this coupling problem within

a single day. The end result is a clearly defined interface and division of responsibility

between Lift and Schedule-Lifts.

This completes our discussion about example Reacto specification improvements for

our two problems, we turn now to the next activity in our methodology, transforming from

Reacto to VHDL.

4.5 Conclusion

In this chapter we describe augmenting Reacto with time and applying Reacto to

our example cruise control and lift controller problems.

Our Reacto augmentations include:

"* Clock

"* Time Limit, Min Time and Duration Constraints

"* Transition Delays

82

* Start Time Logs and Timers

e Wait Transition

They make it possible to express time constraints and simulate the behavior of real time

systernr- in Reacto as described in our simple Relay example. We discuss that we could

model asynchronous events in Reacto if we add intermediate states to our FSMs or imple-

ment an event driven simulation, but we choose to use VHDL's event driven simulator to

investigate asynchronous events instead.

We apply Reacto to the Example problems, walking through the following steps with

our example problems:

1. Build the abstract FSM.

(a) Create FSM states.

(b) Create FSM transitions.

2. Specify FSM behavior.

(a) Define constraints and transition dela

(b) Define special data types.

(c) Define input and output variables.

(d) Write the get-input function.

(e) Write state assertions.

(f) Define transition behavior to satisfy State Assertions.

3. Verify and Validate FSM.

(a) Compile and Verify the R-Spec, and make corrections.

(b) Simulate the R-Spec, and make corrections.

We describe the test cases that we use to validate and verify the cruise control and

lift controller specifications in Reacto simulations. Finally, we make significant behavioral

improvements in both the cruise control and lift controller specifications, updating the R-

Specs until they produce the correct results without assertion errors while simulating our

test cases. We are able to make these improvements quickly and easily because of Reacto's

powerful abstractions and visual simulation environment.

83

V. Reacto to VHDL Transformation

In Chapter III we identified the Reacto to VHDL transformation as a significant

supporting activity, and indeed it is a significant portion of our research. The process of

defining the transformation lends insight into the differences between the languages, and

emphasizes the difficulties of describing the relationships of system inputs and outputs

with respect to time.

We attempt to provide a general behavior preserving mapping from Reacto FSMs to

VHDL FSMs, and we consider the transformation of the cruise control, lift, and schedule

lifts FSMs examples of this mapping. A more rigorous and formal mapping between the

two is necessary to insure that all Reacto FSMs can be transformed into VHDL in a

behavior-preserving manner. We consider that rigorous mapping an essential step before

automating the transformation from Reacto to VHDL, but we do not accomplish that

mapping because we consider it beyond the scope of this thesis. It is worthwhile to note

that once the mapping is defined for Reacto to VHDL, the basis will exist to examine

mappings from Reacto to any state-based language such as Ada, C, Pascal, etc...

We show the general mapping of Reacto elements to VHDL elements in Table 4. We

use the notation X - Y in the table to indicate the mapping of a Reacto element to an

element of VHDL.

The following Reacto elements are used to control the generation of the VHDL FSM

controlling case statement and transition procedures, but they are not mapped to a specific

object in VHDL:

"* State Attributes

- substates

- initial-state

"* Transition Attributes

- from-state

- to-state

84

Table 4. Reacto to VHDL Mapping

Reacto - VHDL
States

Name -- Current-State declaration
Own-Vars - Signals and Variables
Assertion -- Assertion Procedure
Runtime-Check ---- Assertion Procedure

Transition
Predicate -- if-then-else predicate
Label - Procedure Name
Action - Transition Procedure Body

Type Declarations - Type Declarations

Sequences - Arrays
Sets - Integer Sets
Tuples -* Records

Input Variables - Entity declaration, in Port
Output Variables - Entity declaration, inout Port

and Variable Declaration
Global Variables - Signal and Variable Declarations
Constants -* Constants
Functions - Functions
Quantification - Functions

85

- history-flag

- priority

We do not map the Reacto call-state mechanism because its function is to implement

textual substitution (23:6), which is something we do not use in our sample problems.

Additionally, we do not map Reacto Interface variables as explained in Section 4.2.2.

In the following paragraphs, we use examples to illustrate some differences between

Reacto and VHDL and to discuss the problems of describing temporal behavior. One

of the differences is so significant, we address it separately in Section 5.1. We organize

our examples by associating them with the process of generating each VHDL source code

section in the following order:

"* Generating Declarations

"* Generating Setup and Cleanup Procedures

"* Generating VHDL Functions

"* Generating Assertion Procedures

"* Generating Transition Procedures

"* Generating the FSM Process Body

The actual VHDL source code for the cruise control and lift controller problems is

contained in Volume II, and we invite you to reference it for clarification as necessary.

After we discuss generating each section, we evaluate the benefits and complications

of automating the transformation in Section 5.8.

5.1 Preemptive Execution Model

We must explain one fundamental difference between the R-Spec and V-Spec models

before we can describe the translation process effectively. In Reacto, we control the clo, k

with the FSM transitions. In VHDL, the simulator controls the dock. Therefore, events

in the VHDL model may occut independently of transition execution, i.e., we can model

asynchronous events in VHDL. Events are no longer constrained to happen at discrete

86

times dictated by transition updates of the clock. This allows us to model what we call a

Preemptive Execution Model (PEM) in VHDL. In the PEM, a transition executing at time

T changes the internal and external state of the FSM at time T+ Transition-Delay. If

subsequent input events occur before time T+ Transition-Delay such that a higher priority

transition predicate becomes true, the higher priority transition executes preempting the

scheduled state changes of the lower priority transition. Investigating the effects of asyn-

chronous events in the VHDL PEM sheds a great deal of light on transition dependencies,

and we disciiss those revelations in Section 6.5.2.

5.2 Generating Declarations

The first required VHDL declaration is the entity declaration. It declares the FSM

entity and describes its interface to the outside world. We use the most abstract state from

the R-Spec to name the entity, and we use inputs and outputs declared in the auxiliary file

to generate the entity declaration. Figure 41 shows the cruise control inputs and outputs

corresponding to those generated from Figure 28. VHDL requires that port direction be

entity Cruise-Control is
port (InTopGear,

Braking,
Engine-Running,
Deactivate,
Start-Accelerat ion,
Stop-Acceleration,
Activate,
Resume : in boolean false;
Current.Speed : in real 0.0;
Acceleration : in real 0.0;
Actuator-Voltage : inout real 0.0);

end Cruise-Control;

Figure 41. VHDL Cruise Control Entity Declaration

specified. We specify the in direction for all FSM inputs, and inout for all FSM outputs

since we read them to make state assertions and to use their current value in calculations.

87

Note that Reacto identifiers contain hyphens, but not underscores and VHDL iden-

tifiers contain underscores but not hyphens. We change all hyphens to underscores as we

translate. Additionally, we cannot use any Reacto or VHDL reserved words as identifiers.

For example, we change Schedule-Lifts' state name from "On" in the R-Spec to "Onl" in

the V-Spec because the word "on" is a reserved word in VHDL.

Although not illustrated in our cruise control example, connecting different entities

in VHDL with special data type signals requires declaration of these types in a package.

In our VHDL package Lift-Types we define the special data types necessary to connect lift

and schedule lifts together. Any entity that uses special data types requires a separate

package defining the special data types because at a minimum, we must connect the FSM

entity to a Testbench entity for simulation. We compile VHDL type declaration packages

and "use" them via statements like use work.Lift-Types.all in every source file where those

types are referenced. A separate package is not necessary in Reacto because we do not

connect Reacto state machines together, but we prepare for the VHDL transformation by

generating and compiling a lift-types.re file which includes the necessary declarations.

Once we generate the entity declaration, we begin generating the architecture which

describes the behavior of the entity declaration. The first part of the architecture is its

declarations section. We generate VHDL constant and signal declarations from the Reacto

auxiliary file constant and variable declarations, and also from Reacto spec file state-

owned variable declarations. Example declarations are illustrated in Figure 42. Note that

in Figure 42 we change the type of time objects from integer to the predefined VHDL type

time. We also change the set(integer) declaration to set(1 to Top-Floor) matching our

VHDL implementation of integer sets.

Reacto auxiliary file declarations are global, but R-Spec state-owned variables are

scoped lexically (23:4). This means that state-owned variables declared in state S1 are

visible in S1 and substates of S1. In each VHDL FSM, all identifiers except dynamic

function variables are global, requiring a mapping to unique VHDL identifiers for repeated

Reacto state-owned variable identifiers. We repeat no identifiers in our example R-Specs,

but we propose that creating unique identifiers in VHDL by prepending the state name

88

type Floor-Set-Type = set(integer)

Reacto Lift-Type.Re Declaration

constant Light-On-Time-Limit integer = 100
var Timeout-Timer : integer = Max-Time-Reset

Reacto Auxiliary File Declarations

the-state LIFT
own-vars(Dest-Schedule : Floor-Set-Type = {})

Reacto Spec File Declaration

subtype FloorSetType is set(I to Top-Floor);

VHDL Lift-Types Declaration

constant LightOnTimeLimit time := 100 ms;
signal TimeoutTimer : time MaxTimeReset;
signal DestSchedule : FloorSetType := (others => '0');

VHDL Architecture Declarations

Figure 42. Declarations Example

89

solves this problem- e.g, if Reacto state S1 owns variable A and Reacto state S2 owns

variable A, they map to VHDL identifiers SlA and S2A.

We map Reacto declarations of type symbol to VHDL enumerated type declarations

in the VHDL types package and corresponding VHDL object declarations of that type as

shown in Figure 43. Every Reacto symbol object is compatible with every other Reacto

type Motor-Control-Type = symbol
var Motor-Control : Motor-Control-Type = 'Off

Reacto Symbol Type and Object Declarations

type MotorControlType is (Up, Down, Off);
Motor-Control : inout MotorControlType := Off;

VHDL Symbol Type and Object Declarations

Figure 43. Symbol Type Declaration Example

symbol object, and objects of type symbol can take on any symbol value. Therefore,

generating VHDL type declarations for Reacto variables of type symbol requires searching

the R-Spec for all of the values assigned to the variable. Similarly, we generate the VHDL

state type declaration and the state signal declaration using the R-Spec primitive states

in the Reacto machine as shown in Figure 44. Note that we initialize CurrentState to the

type LiftStateType is (Off, Idle, Stopped, Moving);
signal Current-State : LiftStateType := Idle; I

Figure 44. VHDL Lift State Declarations

R-Spec's default state Idle.

Initial values for Reacto's state-owned variables can be set to the value of R-Spec

input variables. In VHDL however, inputs are signals %nd their values depend upon con-

figurations. Since configuration values are not available at V-Spec compile time, VHDL

does not allow initialization with the signal name. We make extensive use of the VHDL

90

"others" clause and our knowledge of what the R-Spec input initializations are to correctly

initialize VHDL signals corresponding to R-Spec state-owned variables.

After we map all R-Spec constants and variables to V-spec constant and signal decla-

rations, we are finished generating architecture declarations, and we proceed to generating

the architecture body and its associated declarations.

The first declaration in the architecture body is the concurrent process that models

the behavior of the FSM entity. The lift process declaration shown in Figure 45 is an

example process declaration. We include all inputs in the process sensitivity list so that the

Lift : process
(DestButtons, Emergency-Button, Floor-Sensor,
Outstanding-Requests, Summons,
CurrentState'transaction, TimeoutTimer)

Figure 45. VHDL Lift Process Declaration

process executes on every input event. We add CurrentState'transaction to the sensitivity

list so that the FSM examines the predicates of transitions in a new state immediately after

it enters the new state. If we do not, the FSM stalls until another input event occurs even

though more transition predicates may be true in the new state. We add all timers (like

TimeoutLTimer in Figure 45) to the sensitivity list making the FSM respond in accordance

with the response-response constraints that generated the timer declarations.

In order to implement the PEM in VHDL, we map each R-Spec variable and output

variable into a VHDL signal and a VHDL variable as shown in Figure 46. As described

in the previous paragraphs, we declare all signals in the architecture declaration section.

Now, we declare the variable in the process declaration section of the architecture body.

These two declarations make it possible to keep internal and external state information

consistent when transitions are preempted. Transitions execute in three steps. First,

the transition copies the current value of the signal Floor-Set into variable TFloorSet

by calling procedure Setup. Second, the transition updates TFloorSet executing the V-

Spec statements transformed from the R-Spec transition action. Third, the transition calls

91

Floor-Set : Floor-Set-Type = {}

Reacto Variable Declaration

signal Floor-Set : FloorSetType := (others => '0');
variable TFloorSet : FloorSetType := (others => '0');

Corresponding VHDL Signal and Variable Declarations

Figure 46. Variable Transformation Example

special procedure Cleanup to schedule an update of signal Floor-Set with the current value

of TFloorSet. The signal Floor-Set is updated by the VHDL simulator after transition

delay if no subsequent updates are scheduled for Floor-Set by another higher priority

transition.

5.3 Generating Setup and Cleanup Procedures

We generate Setup and Cleanup procedures to implement the PEM. The first state-

ment in every transition is a Setup call, and the last statement is a Cleanup call. We use

R-Spec output and local variables to generate both the Cleanup and Setup assignment

statements. The cruise control Setup procedure in Figure 47 copies the current value of all

local and output signals except timers into the variables that are used during transition

execution. This insures that the currently executing transition uses the correct internal

state information even though some lower priority transition may have already executed

and scheduled changes to that state information.

The cruise control Cleanup procedure in Figure 48 schedules updates of all local and

output signals except timers with the current value of the variables. The VHDL simulator

updates the signals and Current -State after the specified transition delay. If a lower priority

transition has previously scheduled signal updates, they are cancelled by Cleanup's new

inertial signal assignment, preempting the lower priority transition. When the history-flag

attribute is "false", we use the transition's to-state attribute and Superstate initial-state

92

procedure Setup is
begin
TIdleStartTime Idle.StartTime;
TSpeedChangeStartTime = SpeedChangeStartTime;
TAccelerationChangeStartTime = AccelerationChangeStartTime;
TStartCruisingStartTime := StartCruisingStartTime;
TStartAcceleratingStartTime = StartAcceleratingStartTime;
TStopAcceleratingStartTime = StopAcceleratingStartTime;
TTurnOffStartTime = TurnOffStartTime;
TTargetSpeed Target-Speed;
TAccelerationVoltage : Acceleration-Voltage;
TCruiseVoltage Cruise-Voltage;
T_0ldSpeed Ol=dSpeed;
TOldAcceleration :O= ld-Acceleration;
TActuatorVoltage - Actuator-Voltage;

end Setup;

Figure 47. VHDL Cruise Control Setup Procedure

attributes to determine which state to pass in for Next-State. When a transition's history-

flag attribute is "true", we pass the current value of Current.State to Cleanup, "returning"

the FSM to the current state, correctly implementing Reacto history transitions.

Timers are not included in the Setup and Cleanup procedures because there are

distinct differences between the way timer assignments are handled in VHDL and Reacto.

The Lift R-Spec statement:

Time-ut-Timer <- Clock;

is translated to the V-Spec statement:

TimeoutTimer <= MaxTimeReset, Nov after TimeoutTimerDuration;

The VHDL statement resets the timer in the next delta delay cycle with MaxTimeReset,

and schedules the timer to change to the current time (Now) TimeoutTimerDuration

milliseconds in the future. This accomplishes the following functions:

* Immediately cancels pending timer assignments.

93

procedure Cleanup (Next-State : State-Type;
D : time) is

begin
IdleStartTime <= TIdleStartTime after D;
SpeedChangeStartTime <= TSpeedChangeStartTime after D;
AccelerationChangeStartTime <= TAccelerationChange-StartTime

after D;
StartCruisingStart-Time <= TStartCruisingStart.Time after D;
StartAcceleratingStartTime <= TStartAcceleratingStartTime

after D;

StopAcceleratingStartTime <= TStopAcceleratingStartTime
after D;

TurnOffStartTime <= TTurnOffStart Time after D;
Target-Speed <= TTargetSpeed after D;
Acceleration-Voltage <= TAccelerationVoltage after D;
Cruise-Voltage <= TCruiseVoltage after D;
Old-Speed <= TOldSpeed after D;
Old-Acceleration <= TOldAcceleration after D;
Actuator-Voltage <= TActuatorVoltage after D;
Current-State <- Next.State after D;
end Cleanup;

Figure 48. VHDL Cruise Control Cleanup Procedure

94

"* Makes the predicate of the Timeout transition false in the next delta-delay cycle.

(i.e., the timer is reset if it has gone off.)

"* Sets TimeoutTimer to go off in the future (unless it is reset before

TimeoutTimerDuration elapses), which will cause the FSM process to execute

Ti imeoutTimerDuration milliseconds in the future, because Timeout-Timer is in

its sensitivity list.

"* When Timeout-Timer goes off, it makes the Timeout transition predicate true if

we're still in the stopped state.

These functions insure that V-Spec timer behaves the same as the R-Spec timer, but the

fact that two values are scheduled for the timer in VHDL keeps us from including timers

in the Setup and Cleanup procedures. In fact, we do not declare timer variables in the

process declarations since timers are not included in the Setup and Cleanup procedures.

Because timers are a special case, specifiers must take care to insure timers are set

and reset explicitly by transitions subject to response-response constraints.

5.4 Generating VHDL Functions

The next step is to generate V-Spec functions from R-Spec functions defined in the

V-Spec auxiliary files and used by R-Spec transitions. Figure 49 is the V-Spec version

of the R-Spec function transformed from Chapter IV, Figure 39. This transformation is

straight forward, because the semantics of Refine's if-then-else is the same as VHDL's.

We do not transform the R-Spec get-input function to VHDL. Get-input's purpose

is to drive FSM inputs, and report FSM outputs in the Reacto-Emacs window during

simulation as discussed in Section 4.2.2. In VHDL, the simulator and Testbench entity

drive input and report output replacing the get-input function. We describe Testbench

creation in Section 6.1.

In addition to generating functions which are defined in the R-Spec, we must generate

functions to perform operations which are defined in Reacto, Refine and lisp but not in

VHDL. Simple examples include the refine operator implies and the lisp operator Min.

Figure 50 shows our VHDL functions for these two operations.

95

function GetCruiseVoltage (Target : real;
Actual : real) return real is

variable Delta-Speed : real Target - Actual;
variable Voltage : real 0.0;

begin
if Delta-Speed > 2.0 then

Voltage := 8.0;
elsif Delta-Speed >= -2.0 and Delta-Speed <= 2.0 then

Voltage 2.0 * (Delta-Speed + 2.0);
else

Voltage 0.0;
end if;
return Voltage;

end GetCruiseVoltage;

Figure 49. VHDL GetCruiseVoltage Function

function Min (left, right : real) return real is
begin -- Min

if left <= right then
return left;

else
return right;

end if;
end Min;

function Implies(A, B boolean) return boolean is
begin -- Implies

if not A then
return true;

end if;
return B;

end Implies;

Figure 50. VHDL Min and Implies Functions

96

Our VHDL implies function helps resolve this problem, but it does not provide a

"short-circuit" implies, hence schedule lifts' R-Spec state assertion is transformed into

several VHDL statements as shown in Figure 51. The if statement condition avoids a

assertion Num-Summons > 0 =>
Total-Response-Time / Num-Summons <= Average-Response-Limit

Lift R-Spec State Assertion

if CurrentState'active and NumSummons > 0 then
assert Implies(NumSummons > 0,

TotalResponseTime / NumSunmons <=

AverageResponseLimit)
report "Schedule-Lifts State assertion failed"
severity warning;

end if;

Lift V-Spec State Assertion

Figure 51. VHDL Implies Problem

divide-by-zero error that occurs because NumSummons is initially zero.

Additionally, sets and set operations are not available in VHDL. Solving this problem

requires generating a set data type and operations on those sets. Since we use the set data

type in both the lift and schedule lifts FSMs, and their associated Testbenches, we define an

integer set data type and the traditional set operations in a separate package Integer-Sets.

Volume II includes our implementation.

One of the set operations we implement is the Refine "arb" operator. Because the

behavior of Refine's arb operator is not spelled out explicitly in the Refine Users Guide (30),

our implementation probably does not select the same element from a set as the Reacto

arb operator, leading to potential differences in the simulations. For example, the Refine

arb may pick lift 1 to handle some request, and our VHDL arb operator may pick lift 3,

leading to divergent test results from that point on.

97

We map R-Spec sets of non-integer type to sets of integers by providing map (M)

and reverse-map (RM) functions in our Lift-Types package (see Volume II).

Whenever the R-Spec uses quantification, we write a special function to iteratively

perform the quantification and include it in the V-Spec functions. Figure 52 shows an

example R-Spec quantification statement and the corresponding V-Spec function. Both

the Reacto quantification statement and the VHDL function evaluate to true when there

is at least one lift not in the Off state.

ex(Lifts : StatusType)(Lifts in Status and Lifts.State /= Off)

Reacto Quantification Statement

function ExNotOff (Status Status-List) return boolean is
variable Temp : boolean false;

begin
for Lift in I to NumLifts loop

if Status(Lift).State /= Off then
Temp := true;

end if;
end loop;
return Temp;

end ExNot.Off;

Corresponding VHDL Quantification Function

Figure 52. Set Quantification Example

5.5 Generating Assertion Procedures

R-Spec assertions are the key to verifying R-Spec behavior and consistency. We

use them to verify our V-Spec by transforming them into V-Spec assertion procedures as

depicted in Figure 53. Recognize that lines 4 through 7 are almost identical to the R-Spec

Idle state assertion. We restrict V-Spec assertion verification with the if current-state'active

then clause (line 3). This means we check assertions after every transition execution,

but not during delta-delay cycles or in conjunction with simulation cycles triggered by

98

the-state IDLE
assertion ACTUATOR-VOLTAGE = 0.0 &

CLOCK - IDLE-START-TIME <= IDLE-TIME-LIMIT

Reacto Cruise Control Idle Assertion

1 procedure Idle-Assertion is
2 begin -- Idle-Assertion
3 if CurrentState'active then
4 assert Actuator-Voltage = 0.0 and
5 nov - IdleStartTime <= IdleTimeLimit
6 report "Idle State assertion failed"
7 severity warning;
8 assert Implies(IdleStartTime /= StartTimeReset,
9 InTopGear'last.event <= IdleTimeLimit or
10 Braking'last.event <- IdleTimeLimit)
11 report "VHDL 'last-event Idle State assertion failed"
12 severity warning;
13 end if;
14 end Idle.Assertion;

VHDL Cruise Control Idle Assertion Procedure

Figure 53. Assertion Transformation Example

99

asynchronous input events. If we attempt to verify assertions during asynchronous event

cycles, temporal assertions fail because start time logs checked after the previous transition

are not reset until the next transition executes.

The translation process does not generate lines 8 through 12; we add Signal'last-event

assertion statements like

assert Implies(Idle-StartTime /= StartTimeReset,
InTopGear'last-event <= IdleTimeLimit or
Braking'last-event <= IdleTimeLimit)

report "VHDL 'last-event Idle State assertion failed"
severity warning;

to investigate the effects of asynchronous events and multiple synchronous events on the

FSM. In Section 4.1.1 we explain that we use start time logs to "mark the time that events

occur", but actually start time logs only tell us the time that we start responding to a

particular event. Generally, we respond to an event when it occurs, but for asynchronous

events and multiple synchronous events, this may not be the case. We must examine event

history data to determine when the asynchronous events and multiple synchronous events

actually occur. Signal'last-event assertion statements are not part of the R-Spec, but they

can be added to the R-Spec if we expand our Reacto get-input function to log the last-event

times. Instead, we demonstrate the power of looking at event history information in VHDL

since the capability to look at signal history is already implemented via the signal'last.-event

attribute. In this case we know which events cause the Idle.Start-Time start time log to

be set, and we examine In-TopGear and Braking event histories to determine if we have

actually met the IdleTimeLimit constraint.

Usually, we only examine event histories of input signals, but since we define internal

variables as signals in the V-Spec we can examine their histories also. We discuss one such

situation involving Current-State in Section 6.5.2.

5.6 Generating Transition Procedures

We generate V-Spec transition procedures from each R-Spec transition object's action

attribute except for the Wait transition. As described in Section 4.1.1, wait's functions

100

are to get input and update the system clock. Since the VHDL simulator assumes the

functions of managing the system clock and driving the V-Spec with input, we do not need

the wait transition in the V-Spec. Figure 54 repeats the Reacto source code for the cruise

control's Startup transition depicted earlier in Figure 31. Figure 55 is the Reacto source

1 "Startup"
2 a-transition off-transition-I from Off to On
3 predicate Activate & Current-Speed >= the-real(30.O)
4 & In-Top-Gear & -Braking & Engine-Running & -Deactivate
5 action Start-Cruising-Start-Time <- Clock;
6 Turn-Off-Start-Time <- Start-Time-Reset;
7 Clock <- Clock + Startup-Delay;
8 Old-Speed <- Current-Speed;
9 Target-Speed <- Current-Speed;
10 Cruise-Voltage <- Get-Cruise-Voltage(Target-Speed,
11 Current-Speed);
12 Actuator-Voltage <-
13 Cruise-Voltage
14 Min (Max-Volt-Change-Per-ms * Startup-Delay);
15 Get-Input()
16 priority 20

Figure 54. Reacto Cruise Control Startup Transition Source Code

code for the cruise control's Startup transition transformed from the Reacto transition

depicted in Figure 54. As mentioned in Section 5.2, transitions execute in three steps.

First, the transition calls procedure Setup. Second, the transition executes the V-Spec

statements transformed from the R-Spec transition action. And third, the transition calls

Cleanup. The R-Spec transition action statements in Figure 54 lines 5-15 map directly

to the V-Spec statements in Figure 55 lines 4-12, with the exception of the Clock update

statement in R-Spec line 7 and the get-input call in line 15. The Startup-Delay in R-

Spec line 7 is passed to the Cleanup procedure in V-Spec line 13, scheduling the changes

made by Startup to occur Startup-Delay in the future. The get-input call in line 15 is not

transformed to VHDL, because the VHDL testbench and simulator provide V-Spec input.

101

1 procedure Startup is
2 begin -- Startup
3 Setup;
4 TStartCruisingStartTime := now;
5 TTurnOffStartTime := StartTimeReset;
6 TOldSpeed := CurrentSpeed;
7 TTargetSpeed := Current-Speed;
8 TCruiseVoltage := GetCruiseVoltage(TTargetSpeed,
9 Current-Speed);
10 TActuatorVoltage :=
11 min(T.CruiseVoltage,
12 MaxVoltChangePer-ms * real(StartupDelay / TC));
13 Cleanup(Cruise, Startup-Delay);
14 end Startup;

Figure 55. VHDL Cruise Control Startup Transition Procedure

5.7 Generating the FSM Process Body

Finally, we describe generating the FSM Process Body. We use the following R-Spec

attributes to generate the FSM process body:

" State Attributes

- substates

" Transition Attributes

- from-state

- predicate

- priority

Figure 56 shows the general form of the FSM process body using a portion of the

cruise control FSM process body. The line numbers are added for the purposes of discus-

sion.

The process body consists of a simple if statement and a controlling case statement.

The if statement (lines 2-4) resets the variable Scheduled-Priority when the VHDL simula-

tor completes a scheduled transition execution. This allows any transition whose predicate

102

1 begin
2 if CurrentState'active then
3 Scheduled-Priority := integer'low;
4 end if;
5 case Current-State is
6 when Off =>
7 Off-Assertion;
8 ..
9 when Idle =>

10 On-Assertion;
11 Idle.Assertion;
12 if not Engine-Running or Deactivate and
13 100 > Scheduled-Priority then
14 Shutdown;
15 Scheduled-Priority := 100;
16 elsif Resume and InTopGear and not Braking and
17 20 > Scheduled-Priority then
18 ResumeAndEnabled;
19 Scheduled-Priority := 20;
20 elsif Start-Acceleration and InTopGear and not Braking and
21 15 > Scheduled-Priority then
22 AccelerateAnd.Enabled;
23 Scheduled-Priority := 15;
24 end if;
25 when Accelerating =>
26 ...
27 when Cruise =>
28 ...
29 end case;
30 end process Cruise-Control;

Figure 56. VHDL FSM Process Body

103

is true to execute subject to the case statement. The case statement (lines 5-29) controls

the V-Spec FSM. It maintains the current state and calls the assertion and transition pro-

cedures. There is a case statement option (lines 6, 9, 25, and 27) for each primitive state

in the FSM.

Within each option, the FSM executes applicable assertion procedures1 first (lines 7,

10, 11). If any assertion is false, the simulator outputs a warning message, and continues

executing. For example, we call the assertion procedure for the On state and the Idle state

(lines 10 and 11) because the Idle state is a substate of On.

Second, the FSM evaluates applicable transition predicates in an if-elsif hierar-

chy (lines 12-24). When the cruise control is Idle, transitions Shutdown (line 14), Re-

sumeAndEnabled (line 18), and AccelerateAndEnabled(line 22) are all applicable. It

evaluates transition predicates in priority order, executing the first transition with a true

predicate if that transition's priority is greater than any currently scheduled priority. This

effectively implements the PEM discussed earlier in Section 5.1. Note that no transition

preempts itself, since no transition priority is greater than itself.

It is important to specify a distinct priority for each transition to avoid creating a

different V-Spec priority scheme than the R-Spec as discussed in Section 4.2.2.

5.8 Automating The Transformation

At the beginning of this chapter, we specify a general mapping from Reacto to VHDL,

and in the previous paragraphs we describe a detailed transformation process from the R-

Spec to the V-Spec. Manually performing the transformation from the R-Spec source files

is tedious. Even minor errors can cause big problems. We can automate most of the

transformation process, significantly improving its speed and accuracy.

The automated transformation can use the R-Spec source files as input or simply use

the R-Spec in the knowledge base as an abstract syntax tree, producing the V-Spec source

code directly from it.

'Assertion and transition procedures are applicable if they are associated with the primitive state or a
superstate of the primitive state as determined from the states substates attribute.

104

There are some complications to consider in order to automate the transformation

process. For example, generating the V-Spec entity declaration requires knowing which

variables are the inputs and outputs. The R-Spec inputs and outputs are identified by

comments in the auxiliary file and such comments are not currently present in Refine's

knowledge base. The entity declarations could be generated from the SADT diagram

using Eickmeier's method (12:64-65,123-124), or we could use Reacto's interface variables

to specify our inputs and outputs if they evolve to something like VHDL signals in future

versions of Reacto. In any case, adding a Reacto graphical interface specification capability

ala SADT to Reacto would make it easier to specify inputs and outputs and understand

the state machine in its environment.

Current differences in the Reacto and VHDL languages also complicate automated

transformation. Generally, Reacto is more abstract than VHDL, therefore we generate a

lot of VHDL code to support Reacto operators, sets and set operations as discussed in the

previous sections. These problems are not limited to those already mentioned; for example,

if we need to use Reacto maps, we would have to generate even more VHDL code.

A second difference between Reacto and VHDL is that VHDL is more strongly typed

than Reacto. This causes some difficulty mapping from Reacto symbol types to VHDL

enumerated types as shown in Section 5.2. Strong typing also causes problems with ex-

pressions of type time. In Reacto, expressions involving integer time types work correctly

with real data types, but VHDL's strong typing forces us to add a conversion factor and

explicit type conversion. Figure 57 shows an example Reacto statement and corresponding

VHDL statement illustrating this problem. We declare the Time constant TCin Figure 57

explicitly for the purpose of mixing time type with real in this expression.

These and other problems must be successfully addressed to completely automate

the transformation process, but even a partially automated transformation could save

considerable time and reduce errors.

105

Max-Volt-Change-Per-ms * Startup-Delay

Reacto Expression

constant TC : Time := i ms; -- Time conversion factor

MaxVoltChangePer-ms * real(StartupDelay / TC)

Corresponding VHDL Expression

Figure 57. VHDL Strong Typing Example

5.9 Conclusion

In this chapter we describe translating from Reacto to VHDL. The Reacto to VHDL

transformation is a significant portion of our research. We define the transformation pro-

cess by applying it to our example problems. The transformation process exposes the

differences between the languages, and emphasizes the difficulties of describing the re-

lationships of system inputs and outputs with respect to time in the two languages. We

encourage the use of an automated transformation process to eliminate errors and expedite

the transformation.

Our three example transformations do not constitute a rigorous and formal mapping

between Reacto and VHDL. They are specific examples of behavior-preserving transfor-

mations. Defining the rigorous mapping is essential before automating the transformation

from Reacto to VHDL.

In order to reconcile the differences in the way our Reacto model and VHDL control

the clock and drive simulation input, we introduce a Preemptive Execution Model(PEM) for

VHDL. The PEM allows higher priority transitions to preempt lower priority transitions,

giving us the ability to investigate the effects of asynchronous events shedding light on

transition dependencies.

106

VI. Applying VHDL

In the previous Chapters we discuss augmenting Reacto with time, applying Reacto

to our two problems, and transforming the R-Specs in V-Specs, now we relate applying

VHDL to our example problems by discussing the following items:

"* Driving the VHDL Simulation

"* Increasing Simulation Power

"* Running the VHDL Simulator

"* VHDL Test Cases

"* VHDL Specification Improvements

6.1 Driving the VHDL Simulation

Successful application of the steps defined in Section V provides us with a V-Spec.

Before we can execute the V-Spec, we must create a separate entity called a Testbench.

We use the Testbench to drive FSM input and to evaluate and report FSM output. After

we generate the Testbench, we create a VHDL configuration connecting the Testbench to

the V-Spec FSM and execute the V-Spec.

6.1.1 Testbench Generation Since we do not transform the Testbench from the R-

Spec, we now describe generating a Testbench. Volume II contains the VHDL code for

the cruise control Testbenches. A Testbench has two parts, an entity declaration, and an

architecture containing the behavioral description of the Testbench. Our Testbenches are

null entities like the one defined in Figure 58.

entity Cruise-Test is
end Cruise-Test;

Figure 58. VHDL Null Cruise-Test Entity

107

The VHDL architecture we define for the null Testbench entity has two sections, dec-

larations and body. In the architecture declarations section, we declare the components

hooked to the Testbench and the signals we need to connect the Testbench to the compo-

nents. We may have more than one component to connect. If, for example, we connect

our lift and schedule-lifts FSMs together for a test, they would each be declared in the

architecture declarations section.

Our Testbench architecture body has three parts, component instantiations, driver

process, and monitor processes. The component instantiations name the previously de-

clared components, and provide the opportunity to create multiple instantiations of each

component. If for example, we want to include multiple lifts in our simulation, we in-

stantiate them, specifying their connections to the declared signals via a VHDL generate

statement as shown in Figure 59. Collectively, we refer to the instantiated components as

the Test System (TS).

Lifts : for i in 1 to NumLifts generate
L .A-Lift

generic map Wi)
port map (

DestButtons(i),
Emergency -Buttons (i),
Outstanding-Requests,
Summons (i),
DestLights(i),
Status(i));

end generate;

Figure 59. VHDL All Lift Instantiation

The next part of the Testbench is the driver process. The driver process drives the

inputs of the TS by assigning new values to the signals connected to the TS. The driver

process runs concurrently with the TS, and we use wait statements to coordinate the

Testbench with the TS as desired during the simulation. Because the Testbench and the

TS run concurrently, we are not constrained to synchronize inputs with FSM transitions as

we are in our Reacto simulation. We implement the R-Spec test cases by creating VHDL

108

signal assignment statements and wait statements that provide the same input to the TS.

We write VHDL assertion statements in the driver process to examine TS outputs for

expected behavior and notify us of anomalies during simulation.

The third part of the Testbench is the monitor process section. The monitor processes

provide simulation output to the simulator window so we can examine Testbench and TS

behavior. We create a monitor process for each signal used to connect components and the

Testbench. As events occur on a signal, its monitor process writes the time, signal name

and signal value to the simulation window, giving us a log of system behavior.

6.1.2 Testbench Configuration The final step before VHDL simulation is to gener-

ate the test configuration. The test configuration simply identifies which library compo-

nents we wish to connect into the Testbench architecture, The All-Lift-Test configuration,

Test2, shown in Figure 60 is a good example. ScheduleLifts(Reacto) in Figure 60 is the

configuration Test2 of AllLiftTest is
for Behavior

for all: Schedule-Lifts
use entity work.ScheduleLifts(Reacto);

end for;
for Lifts

for all: A-Lift
use configuration work.MotorizedLift;

end for;
end for;

end for;
end Test2;

Figure 60. Lift Configuration

V-Spec architecture, and Motorized-Lift is another configuration including the V-Spec lift

and the VHDL entity Motor. Motor models the floor sensor input to a lift based on the

lift's motor control output, freeing us from having to generate floor sensor input to the

lifts from the driver process. We use this example to illustrate increasing simulation power

in the next section.

109

6.2 Increasing Simulation Power

In Reacto, we are constrained to simulate one R-Spec at a time, and to provide all

of the inputs to that R-Spec interactively or through the simulation script file. Because

VHDL is a concurrent language, we can simulate more than one entity simultaneously. This

allows us to simulate multiple FSMs and to model other entities in conjunction with FSMs.

This capability increases simulation power tremendously. We use our lift simulations to

illustrate this power.

The SADT diagram in Figure 61 shows how we connect a "motor" to the lift FSM, re-

lieving us of the responsibility to provide floor sensor input to lifts from the Testbench. We

AUTHOR: Frank Young DATE: 11402-92 READER:
PROJECT- Lift-Controller REV: 1.0 DATE:

Summonsm

S DWt-Buntom

Fiocr-Semow E.ergency-Button

Fi gMLift
SA T Digtr

VHDL desribing he motorarchiteture ehvorbtw oldcet nRpcFMt

MotorMy-Fimo-Senera Hoor-Senewr

2

NODE: Al TnTE: Motorized-Lift INUMBER: "•.

Figure 61. Motorized Lift SADT Diagram

specify Motor behavior in the file mnotor.vhd, included in Volume II. We write conventional

VHDL describing the motor architecture behavior, but we could create an R-Spec FSM to

specify motor behavior and transform the Motor to VHDL as described in Section V.

Now that we have a motor for our lift, we declare a motorized lift entity and connect

the motor and lift in a configuration. Now we can create instantiations of motorized lifts

without configuring motors and lifts together every time we want to use one. We build the

110

configuration Motorized-Lift in file motorized-lift.vhd, also contained in Volume II. Now,

no matter how many lifts we want to simulate, we do not have to generate any floor sensor

inputs. We also create monitor processes in the Motorized lift configuration architecture.

They provide simulation output for all lift inputs and outputs including motor control and

floor sensor information. We use a VHDL generic to provide a unique number for each lift,

and include that lift number in all lift output during the simulation so we can associate

output with the correct lift.

The motorized lift example illustrates our ability to model other objects in conjunc-

tion with the objects we are specifying. This increases the power of the simulation by

reducing the amount of simulation input we must generate in the Testbench. The behav-

ior of these objects can be defined by FSMs or any algorithm or structure (a composition

of entities).

In the lift controller problem, this allows us to easily vary the number of lifts in the

simulation, just by changing the constant parameter Num-lifts in package Lift-Types. We

use the Big-Test configuration and architecture to simulate nine lifts and 20 floors with

the motorized-lift configuration. Coordinating all 9 floor sensor inputs in the Testbench

without the motorized lift configuration presents an apparently intractable problem, but

VHDL's simulation power allows us to overcome it easily.

6.3 Running the VHDL Simulator

There are three ways to run the simulations in VHDL. The first way is through

the interactive simulator VHDLSIM. VHDLSIM provides a command line interface to the

Testbench. The second way is through the VHDL debugger VHDLDBX. VHDLDBX also

pro.-ides a command line interface, but in addition, it provides a user friendly mouse

interface and scrolling windows to control and watch the simulation. The third and final

way is to use a script file, sending output directly to a system text file for later analysis

and to archive the test results.

We use VHDLDBX to debug and understand V-Spec execution. We use the script

file method to archive and compare simulation results with the R-Spec simulations. As we

ill

analyze simulation results, we observe behavior problems and make improvements to the

specification. In the next sections, we discuss test cases used, and resulting improvements.

6.4 VHDL Test Cases

Generally, the VHDL test cases are the same as the Reacto test cases described in

Section 4.3. Some test cases are new, and we describe those new test cases here. Our final

V-Specs pass all of these tests, outputting the correct results without failing any assertions.

We refer the reader to Volume II of this thesis for actual VHDL input testbench files and

results of each test case.

6.4.1 Cruise Control Test Cases Except for the asynchronous event tests, all VHDL

cruise control test cases are identical to the Reacto test cases. We show the cruise control

input to and output from the Activation Allowed Test as we do for Reacto in Section 4.3.1.

Initialization Test (Same as Reacto)

Activation Denied Test (Same as Reacto)

Activation Allowed Test Same as Reacto, but explained here for comparison. This

tests that the cruise control shall activate when the engine is running, the transmis-

sion is in top gear, and the speed is at least 30 miles per hour (mph). Requirements

Tested: R1, R2, R3, C4. Test steps:

1. Set In-Top-Gear, Engine-Running to true

2. Set Braking to false

3. Set Speed to 30 mph

4. Toggle Activate between true and false

5. Set Speed to 29 mph

6. Is Actuator-Voltage greater than 0.0 volts?

Actual test input is shown in Figure 62. Note that VHDL inputs are compiled

VHDL statements in the VHDL testbench, not strings in an input text file like our

112

Reacto input files. The assertion statement checks the output of the cruise control

for us during the simulation, and if the output is not what we expect, it outputs the

error message "Test Error." The two wait statements coordinate the timing of the

test inputs with the TS without concern for actual transition delays. The Shut-Off

procedure call turns the cruise control off in preparation for the next test.

MyIO.PutLine ("Start Activation Allowed Test ****");
InTopGear <= true;
Braking <= false;
Current-Speed <= 30.0;
Engine-Running <= true;
Activate <= true, false after 1 sec;
wait for 10 sec;
Current-Speed <= 29.0;
wait for 1 sec;
assert Actuator-Voltage > 0.0
report "Test Error"
severity warning;
wait for 10 sec;
Shut-Off;
MyIO.PutLine ("Stop Activation Allowed Test ****");

Figure 62. VHDL Cruise Control Activation Allowed Input

Actual Activation Allowed Test output is shown in Figure 63. Note that all input

and output events are logged along with the time of each event. The reason there

is no event for the Set Braking to false step, is that Braking is already false because

it is changed by the Shut-Off procedure during the previous test. The word "event"

is output in conjunction with the Actuator-Voltage value, indicating that the cruise

control changed the value of Actuator-Voltage from its previous value. In other tests,

the word "Transaction" indicates reassignment of the old value, and the word "Trig-

ger" indicates that we triggered the Actuator-Voltage monitor process by changing

the boolean signal Trigger to output the current value of Actuator-Voltage without

any assignment to Actuator-Voltage.

113

Start Activation Allowed Test *

6000 MS InTopGear : TRUE
6000 MS Current-Speed : 30.00
6000 MS Engine-Running : TRUE
6000 MS Activate : TRUE
6250 MS Actuator-Voltage : Event 0.20
7000 MS Activate : FALSE
7250 MS Actuator-Voltage : Event 1.00
8250 MS Actuator-Voltage : Event 1.80
9250 MS Actuator-Voltage : Event 2.60

10250 MS Actuator-Voltage : Event 3.40
11250 MS Actuator-Voltage : Event 4.00
16000 MS Current-Speed : 29.00
17000 MS Actuator-Voltage : Event 4.80
18000 MS Actuator-Voltage : Event 5.60
19000 MS Actuator-Voltage : Event 6.00
27000 MS InTop.Gear : FALSE
27000 MS Braking : TRUE
27000 MS Deactivate : TRUE
27000 MS Stop-Acceleration : TRUE
27000 MS Current-Speed : 0.00
27000 MS Engine.Running : FALSE
27500 MS Actuator-Voltage : Event 0.00
28000 MS Braking : FALSE
28000 MS Deactivate : FALSE
28000 MS Stop-Acceleration : FALSE

Stop Activation Allowed Test ****

Figure 63. VHDL Cruise Control Activation Allowed Output

114

At 6000 ms, we tell the cruise control to activate. Since the transmission is in top

gear, the speed is at least 30 miles per hour, the engine is running, and the brakes

are off, the cruise control turns on. It sets the output voltage to 0.20 volts 250 ms

later at 6250 ms. Voltage does not increase to 4.0 volts immediately because this

would violate the maximum allowed voltage increase of 0.8 volts/second. Instead, at

one second intervals, cruise control increases the voltage by the amount allowed until

it reaches 4.0 volts. At 16000 ms, we change the current speed to 29 miles per hour,

and the cruise control responds by raising the voltage to increase the speed subject to

the 0.8 volts/second constraint. At 19000 ms voltage reaches the required 6.0 volts.

At 27000 ms, we shut the cruise control off in preparation for the next test. These

are the expected results, and no VHDL assertions are violated, so this version of the

cruise control passes the Activation Allowed Test. We compare this output with the

Reacto output from the same test in Section 7.1.

Deactivation Test (Same as Reacto)

Acceleration Test (Same as Reacto)

Resume Test (Same as Reacto)

Downhill Test (Same as Reacto)

Uphill Test (Same as Reacto)

Breaking During Activate Delay Test is an asynchronous event test, meant for use

with VHDL, and explicitly designed to expose timing dependencies between the

Startup and Not-Enabled transitions. It models the situation where the driver acti-

vates the cruise control, and less than 250 ms later puts on the brakes.

Figure 64 is the output from the VHDL Breaking During Activate Delay Test, and

as you can see, we are able to input a Braking event at 228100 ms, independent of

the cruise control's output events at 228250 ms or 228500 ms and the Activate events

at 228000 ms and 229000 ms. We are constrained to do differently in the Reacto

test depicted in Figure 34. Here, the cruise control output voltage is 0.00 volts at

228500 ms, meeting the time constraint to stop cruising within 500 ms of the Braking

115

Start Breaking During Activate Delay Test ***

228000 MS InTopGear TRUE
228000 MS Current-Speed 45.00
228000 MS Engine-Running TRUE
228000 MS Activate . TRUE
228100 MS Braking : TRUE
228250 MS Actuator-Voltage Event 0.20
228500 MS Actuator-Voltage Event 0.00
229000 MS Activate . FALSE
233000 MS Braking FALSE
239250 MS InTopGear FALSE
239250 MS Braking TRUE
239250 MS Deactivate TRUE
239250 MS Stop-Acceleration TRUE
239250 MS Current-Speed 0.00
239250 MS Engine-Running FALSE
239750 MS Actuator-Voltage Transaction 0.00
240250 MS Braking FALSE
240250 MS Deactivate FALSE
240250 MS Stop-Acceleration FALSE

Stop Breaking During Activate Delay Test ****

Figure 64. VHDL Cruise Control Breaking During Activate Delay Test Output

116

event at 228100 ms, passing the test. We turn the cruise control off at 239250 ms,

preparing for the next test.

Breaking During Activate Asserted Test is an asynchronous event test, meant for

use with VHDL, and explicitly designed to expose timing dependencies between the

Startup and Not-Enabled transitions. It is similar to the Breaking During Activate

Delay Test, except for the fact that the braking event occurs more than 250 ms after

the activate event, while activate is still asserted. We expect the cruise control to

turn off within 500 ms of the braking event.

Breaking After Activate B4 Cruise Test is an asynchronous event test, meant for

use with VHDL, and explicitly designed to expose timing dependencies between the

Startup and Not-Enabled transitions. Similar to the two previous test cases, this test

case examines the behavior of the cruise control when the driver presses and releases

the activate button very quickly and puts on the brakes within 250 ms of pushing

the activate button. Again, we expect the cruise control to output zero volts within

500 ms of the braking event.

Resume During Breaking Test is an asynchronous event test, meant for use with

VHDL, and explicitly designed to expose timing dependencies between the Resume-

And-Enabled and Not-Enabled transitions. It models the situation where the driver

activates the cruise control, puts on the brakes after the cruise control activates,

and while the brakes are pressed, pushes the resume button, subsequently releasing

the resume button and the brakes simultaneously. We expect the cruise control to

continue outputting zero volts within 500 ms of the braking event even though the

resume button is pressed.

Deactivate Overlaps Resume Test is an asynchronous event test, meant for use with

VHDL, and explicitly designed to expose timing dependencies between the Shutdown

, Not-Enabled, and Resume-And-Enabled transitions. It models the situation where

the driver activates the cruise control, subsequently deactivates it, and while the

deactivate button is pressed and before the cruise control actually shuts down, also

pushes the resume button, keeping it pressed until after the deactivate button is

117

released. We expect the cruise control to continue outputting zero volts within 500 ms

of the deactivate event even though the resume button is pressed.

6.4.2 Lift Controller Test Cases Refer to Appendix B, Section B where you can

see the details of each test case. In the following Section, we list the lift test cases, and

in Section 6.4.2.2, we describe the schedule lifts test cases. As with the cruise control test

cases, our final lift controller V-Specs pass these tests, producing the expected results,

without VHDL assertion errors.

6.4.2.1 Lift Tests

All Summons Test (Same as Reacto)

All Destinations Test (Same as Reacto)

Emergency Button Test (Same as Reacto)

Mixed Destinations and Summons Test (Same as Reacto)

Timeout Test (Same as Reacto)

6.4.2.2 Schedule Lifts Tests

Off State Test (Same as Reacto)

All-Summons All Lift Test (Same as Reacto All Summons Test)

All Summons 1 Lift Test (Same as Reacto)

All Destinations Test Same as Reacto Lift All Destinations Test, except we task all

four lifts with all destinations simultaneously.

Two User Lift Test A typical scenario test, 2 users summon lifts, push destination but-

tons, and travel to the destinations.

Four User Lift Test A typical scenario test, 4 users summon lifts, push destination but-

tons, and travel to the destinations.

Idle Schedule Test (Same as Reacto)

118

6.5 VHDL Specification Improvements

Specification improvements we make as a result of VHDL simulation analysis can

be categorized into two areas, behavioral and temporal. Behavioral improvements are

improvements we make to correct errors in the relationship between FSM inputs and FSM

outputs. Temporal improvements are those we make to correct errors in the temporal

relationship between input events and output events- i.e., improvements made to correct

behavior violating time constraints.

6.5.1 Behavioral Improvements Since the cruise control is a fairly simple problem

and we are able to thoroughly debug the cruise control R-Spec, we make no cruise control

behavioral improvements as a result of simulating the cruise control V-Spec.

We do however make several behavioral lift specification improvements, mostly be-

cause of VHDL's ability to combine FSMs together during simulation, and partly because

it is easier to generate more powerful test cases in VHDL. In the first example, we discover

that we inadvertently left out setting the Timeout-Timer in the Request-Scheduled tran-

sition. If we run the same test case in Reacto, and correctly interpret the results, we see

this problem. We discover it in VHDL because VHDL's increased simulation power makes

it easier to generate better test cases. Similarly, we discover that we have the priorities

reversed on the Lift's Timeout and Resume transitions. We notice it in VHDL rather than

Reacto only because of a slightly different test case. We correct the problems in both the

Reacto and VHDL models.

When we connect Schedule-Lifts and four lifts together, the VHDL simulation high-

lights a problem between them. The Request-Scheduled Lift transition moves the lift

from Idle to Stopped when Outstanding-Requests includes a summons for the Idle lift's

current floor. Originally, the No-Requests Lift transition subsequently returns the lift to

the idle state when the lift's floor-set is empty without examining Outstanding-Requests

first. Since our Reacto test cases removes the current floor summons from Outstanding-

Requests before the Request-Scheduled transition returns the lift to the stopped state, Lift

appears to function correctly during R-Spec simulation. However, in VHDL, Schedule-

Lifts' Status-Event-Delay is 50 times longer than Lift's Request-Scheduled-Delay plus No-

119

Requests-Delay delaying the removal of the summons from Outstanding Requests. This

causes the lift to toggle back and forth between the Idle and Stopped states 50 times be-

fore Schedule-Lifts can update Outstanding-Requests. It is difficult to sort out whether

this error is a timing problem between Lift and Schedule-Lifts, or a behavioral problem.

Ultimately, we decide it is a behavioral problem. Correcting Lift's No-Requests transi-

tion predicate so the lift stays stopped when Outstanding-Requests includes the current

floor and direction fixes this incompatibility that is apparent under a VHDL simulation

combining the two FSMs together.

6.5.2 Temporal Improvements Examining the effects of asynchronous events on V-

Specs sheds light on dependencies between transitions that would not otherwise be noticed.

In both the Reacto and VHDL models, the FSM reacts to an event on an input because

the new value of that input affects a transition predicate. As a constrained transition

reacts to a new input value it sets a start time log, but we must know when the event

actually occurred to determine if we meet the constraint when we allow asynchronous

events to occur. We look at signal event history with VHDL's signal'last-event attribute in

assertions to determine if we meet constraints when we allow asynchronous events in the

PEM. If we discover that we fail to meet a time constraint, we must investigate why. We

may fail to meet a time constraint for a number of reasons including incorrect priorities,

incomplete transition predicates, and dependent transitions. Generally only the incorrect

priorities or predicates problem is evident in our Reacto model, but because we can drive

signals asynchronously in VHDL, the dependencies are highlighted.

Additionally, because of dependencies in the state machines, multiple events occur-

ring on input signals less than a transition delay apart may be ignored if the state machine

is busy responding to an equal or higher priority events. We attempt to insure that critical

inputs are not missed by carefully determining transition priorities.

Careful design of test cases, and careful analysis of the simulation output helps resolve

missed time constraints and ignored events. For example, assume the cruise control is off,

and the user presses activate and subsequently puts on the brakes before the cruise control

responds to the activate event. If the user keeps the brakes on, the cruise enters the

120

cruise state first, then transitions to the idle state. Does the system violate the idle time

constraint? If so, the Startup and Not-Enabled transitions are dependent, if not, they are

not dependent.

Let us examine this dependency with the cruise control Braking During Activate

Asserted Test. Figure 65 is a simplified timing diagram of this test. The simultaneous

Braking

Activate

State " Idle

Figure 65. Braking During Activate Asserted Test Timing Diagram

events, activate going true and Braking going false, occur at the beginning of the test at

time tO. At time t1, we assert Braking asynchronously. Note that the Braking event does

not immediately cause the FSM to take a transition, it depends on the combination ,f

inputs the transition predicates are sensitive to and the new input values. Reacting to

the Activate event at time tO, the cruise control enters the Cruise state at time t2 via the

Startup transition. Reacting to the Braking event at time t1, the cruise control enters the

idle state at time t3 via the Not-Enabled transition. When we examine event history data

as the cruise control enters the idle state, the Idle state assertion fails. The text of the

assertion is

assert Implies(IdleStartTime /= StartTimeReset,
InTopGear'last-event <= IdleTimeLimit or
Braking' last-event <= IdleTimeLimit)

report "VHDL 'last-event Idle State assertion failed"
severity warning;

121

and it fails because the event on Braking (550 ms) is more than IdleTimeLimit (500 ms)

in the past. This dependency cannot be exposed by an assertion error in our current

Reacto model for two reasons. First, our Reacto get-input function does not log event

history information for us to evaluate. Second, we cannot inject an asynchronous event in

Reacto; we are constrained to inject the Braking event at time tO (test start time) or at

time t2 (at the end of the Startup transition).

We now evaluate that assertion error to determine what it means. The wording of

the original specification is such that the Cruise-Control system must be active before the

braking or not In-Top-Gear events can cause it to go inactive (17:278). Hence, we define no

transition between Cruise-Control's Off and Idle states activated by an event on Braking

or In-Top-Gear.1 We could interpret the informal specification in two ways. One, it means

that the time constraint should be measured from the time the state became Cruise to

the time the state changed to Idle. If we assume the first interpretation is correct, we can

modify the state assertion to allow events on In-Top-Gear or Current-State or Braking

within the time limit to meet the constraint as follows:

assert Implies(IdleStartTime /= StartTimeReset,
InTopGear'last-event <= IdleTireLimit or
CurrentState'last.event <= Idle.i.fmeLimit or
Braking'lastevent <= IdleTimeLimit)

report 'VHDL 'last-event Idle State assertion failed"
severity warning;

Effectively, this means that there is no dependency between the Startup and Not-

Enabled transitions. Second, we can interpret the time constraint to mean the time between

the braking or In-Top-Gear event and the state change to Idle. If we assume the second

interpretation, then we must reduce the delays of the Startup and Not-Enabled transitions

to meet the time constraints because they are dependent. We assume the second inter-

pretation, and set the delays of both transitions to 250 ms, or half of the time constraint

each.

'Without such a transition, the cruise control stays in the Off state.

122

This fixes the time constraint violation, because as illustrated in Figure 66 no matter

when the Braking event occurs between times tO and t2, it is at most 500 ms from time tO

to t3.

Braking

Activate

to tt

State Oft Cruise Idle

250 ms + t2 - t1

Figure 66. Fixed Braking During Activate Asserted Test Timing Diagram

It is interesting to note that this dependency is not peculiar to our V-Spec; it

also applies to a cruise control created using Eickmeier's methodology. Figure 67 is an

SADT diagram representing part of the cruise control we developed using his method-

ology. Referring to Figure 67, each activity has an associated delay. If E + C + S <

IdleITime..Limit then the delays meet the IdleTimeLimit time constraint, and when

C + S < StartCruising.TimeLimit, the StartCruising-Time.Limit constraint is also

met. Because the term C + S appears in both formulas, the two constraints are dependent.

Setting E = 250ms and C + S = 250ms is equivalent to setting each of our transitions in

the V-Spec model to 250 ms.

Injecting asynchronous events into the lift-controller FSMs (Figures 36 and 37) also

reveals some dependencies. For example, we discover that the Lifts' New-Destination

transition is self-dependent. That is, if multiple events occur on Dest-Buttons less than

Light-On-Time-Limit apart, the New-Destination transition cannot meet the Light-On-

Time-Limit time constraint for the succeeding events. We fix this dependency by setting

New-Destination delay to half its constraint. This solves the problem for this transition

under three conditions. One, New-Destination can turn on more than one destination

123

AUTHOR: Frank Young DATE: 11-02-92 READER:

PROJECT: Cruise Control REV: 1.0 DATE:

In-Top-Gear

Braking ,°hutdown

e Accelerate

Enable Enabled SeetAato

Cruise Resuree
delay: E 1

Control ViControliSp••Voltage 5n

dely C 2
ea :C 2 S l c

Actuator-

Cruise-Voltage VioSltage voltage
Acceleration-Voltage deVltg :

NODE: Al1 TITLE: Cruise Control Activities IN U M:B:ER: "'•

Figure 67. Eickmeier's Methodology Cruise Control SADT Diagram

light simultaneously, handling one or more Dest-Buttons events during each execution.

Two, consecutive events on any single Dest-Button occur at least half of Light-On-Time-

Limit apart to avoid missing an event 2 . And, three, New-Destination's priority is high

enough that it cannot be preempted. Changing New-Destination's delay simply point's

out the dependency, leaving the actual implementation up to the system designers. We

mention three (of many possible implementations) for resolving this dependency. One,

assign dedicated independently operating processors the task of turning on and off the light

for each button. Two, assign New-Destination's task to a single independent processor,

which can turn on all the lights for all buttons simultaneously in less than half of Light-

On-Time-Limit time. Three, assign the New-Destination transition and all higher priority

transitions to a processor which accomplishes all activities in less than the shortest time

constraint for any of them.

Although we do not include any test case data exposing the dependency, manual

simulation in the VHDL debugger exposes a dependency between the Lift's Emergency,

2This could be accomplished by electro-mechanical debounced switches, or specified as a separate con-

straint if it were anticipated that buttons would not remain "pressed" for at least this long.

124

Not-Emergency, and New-Destination transitions. A sequence of events on an Emergency-

Button (causing the FSM to toggle back and forth between the On and Off states) can

keep the Lift from responding to Dest-Buttons events for an arbitrary amount of time

violating the Light-On-Time-Limit constraint. The dependency between Emergency, Not-

Emergency and New-Destination cannot be resolved by manipulating transition delays

or transition priorities. We can resolve it by combining these functions together in a

sequential implementation (think of it as a single transition and a superstate combining

both the Off and On states) capable of meeting the minimum time constraint. Breaking the

Reacto Specification down into independent state machines, one for each parallel function,

is another option, but this produces more state machines and a less understandable view

of the specification. Which way is superior? As long as the implementer understands the

need to manage the dependency, either suffices. We leave the specification as is, simply

annotating the dependency, leaving the decision about which way to resolve it to the

developer. In another circumstance, we might have reason to specify one solution over

another, and would change the specification to indicate our preference.

Similarly, while manually exercising the lift in the debugger, we discover a dependency

between the Lifts' At-Scheduled-Floor and New-Destination transitions. A sequence of

events on the Dest-Buttons can keep the lift from responding to a floor sensor event

for an arbitrarily long period of time causing the lift to miss the Light-Off-Time-Limit

constraint. As before, we simply note the dependency and leave implementation details to

the developer.

A similar dependency exists between Schedule-Lifts' Summons-Button-Event and

Status-Event transitions. The Schedule-Lifts' transitions Summons-Button- Event and

Status-Change are both Lime constrained transitions, and they both start and finish in

the same state. We observe that simultaneous summons-button and status events can

cause both predicates to be true. Since only one transition can execute, the lower priority

transition cannot meet it's time constraint. In fact, a sequence of summons-buttons events

can delay the execution of the status-change transition for an arbitrary amount of time. We

propose three alternatives for eliminating this dependency. One, we could separate these

two functions into independent state machines, but but this produces more state machines

125

and a less understandable view of the specification. Two, if Reacto and our methodology

supported orthogonal states, this dependency could be resolved by specifying the On state

as an orthogonal state with one substate for each of the transitions operating concurrently

like STATEMATE. Alternatively, it could be solved by combining the two transitions into

a single transition sensitive to either event and meeting the minimum time constraint. We

recognize that these alternatives are implementations that can resolve the dependency.

We leave the specification as is, simply pointing out the dependency, not constraining the

designer to a particular solution. We do note however, that the STATEMATE orthogonal

states approach allows larger and more complex systems to be specified as a single state

machine, and that perhaps it points out the dependency just as well. We cannot express

orthogonal states in the current R-Spec model, but we could expand the V-Spec to accom-

modate them by specifying a separate concurrent process for each orthogonal substate and

adding its superstate's Current-State to the process sensitivity list.

A sequence of events on Up and Down Buttons can keep Schedule-Lifts from respond-

ing to Status events for an arbitrary amount of time, violating the Light-Off-Time-Limit

constraint. As before, we simply note the dependency and leave implementation details to

the developer.

While simulating Four Lifts Test, we discover that Schedule-Lifts' Summons-Button-

Event transition is self-dependent. If multiple events occur on Up or Down summons but-

tons less than Light-On-Time-Limit apart, the Summons-Button-Event transition cannot

meet the Light-On-Time-Limit time constraint for the succeeding events. We fixed this

dependency by setting Summons-Button-Event delay to half its constraint. This solves

the problem for this transition because Summons-Button-Event can turn on more than

one summons light simultaneously, handling one or more events on the summons buttons

during each execution.

While simulating the Off State Test, we discover a dependency between Schedule-

Lifts' Status-Event and Lifts-Available transitions. Lift status changes from the Off to

On state cause the Status-Event transition to fire, but since the status event occurs while

Schedule-Lifts is in the Off state, Status-Event cannot meet the Light-Off-Time-Limit

constraint. This problem can be resolved by setting Status-Event-Delay to Light-Off-Time-

126

Limit minus Lifts-Available-Delay or 99 ms. However, consecutive events on Status less

than Light-Off-Time-Limit apart create a dependency between the Status-Event transition

and itself. To fix this dependency we must set Status-Event-Delay to one half Light-Off-

Time-Limit or 50 ms. Hence, the smallest time constraint for Status-Event-Delay is 50

ms, and we set Status-Event-Delay to 50 ms. This resolves both dependencies for this

transition.

During the All-Summons All Lift Test, we discover that the lift average response

time constraint is quite sensitive to the particulars of the test case. Initially the lifts are all

on the first floor in the idle state. If the all-summons test is executed without distributing

the lifts throughout the floors in a tall building, the response time is of course very poor.

What's more, the time constraint is considerably more dependent on the physical laws

governing lift operations (i.e., motor speed, door cycle time, number of floors and lifts,

and in real life, how long people hold the lift door open) than it is on the millisecond

delays imposed by our state machines. In our simulation, using times from an actual lift in

our building, we believe 30 seconds is a more realistic average response constraint than 20

seconds. To fully investigate the average response time constraint requires a more detailed

simulation, including implementation of person objects and use of probability distribution

functions. While such a simulation is within the capabilities of VHDL, it is beyond the

scope of this thesis effort. Instead, having made our point, we change the average response

time constraint from 20 to 30 seconds.

6.6 Conclusion

In this chapter we describe applying VHDL to the cruise control and lift controller

problems. We show how to drive the VHDL simulation with a testbench, increase simula-

tion power by combining multiple FSMs in a single simulation, and adding other entities.

We discuss running the VHDL simulator interactively, via the debugger and in the batch

mode.

We describe VHDL test cases, and we demonstrate our success with example speci-

fication improvements made as a result of applying VHDL. We note some behavioral im-

provements and many temporal improvements to both the cruise control and lift controller

127

specifications. VHDL improvements are largely due to the ability to simulate multiple

FSMs, generate more complete test cases, and model asynchronous events.

We note several dependencies that can be resolved by different implementations.

We can express these implementations by combining transitions and states or by creating

multiple FSMs from a single FSM, but we cannot express orthogonal states in the current

R-Spec model. We could expand the V-Spec to accommodate them by specifying a separate

concurrent process for each orthogonal substate.

128

VII. Comparing Reacto and VHDL Results

In Sections 4.4 and 6.5 we discuss the specification improvements resulting from

using Reacto and VHDL. Although some results are similar, many are different. These

similarities and differences are related to the similarities and differences in Reacto and

VHDL capabilities. We depict some relative capability similarities and differences via the

Venn diagram in Figure 68.

Figure 68. Reacto and VHDL Capabilities

As we apply our methodology to the example problems we exploit these differences

and similarities to improve the example SR.Ss. First, we use Reacto's high level abstrac-

tions and state machine visualization to efficiently produce the R-Spec. Second, we use

Reacto's verifier and simulation capability to examine and correct many behavioral and

some temporal problems. Third, we make use of Reacto and VHDL similarities, providing

a transformation from the R-Spec to the V-Spec. Finally, we use VHDL's concurrency

and temporal capabilities to fine tune behavioral problems, examine temporal behavior in

detail, and expose dependencies between transitions. The differences between the two lan-

guages produce some different results, and we now compare some example results. After

that, we summarize the benefits and limitations of the two languages.

129

7.1 Comparing Reacto and VHDL Activation Allowed Tests

Figure 69 contains portions1 of the output from the Reacto cruise control Activation

Allowed Test and Figure 70 contains portions of VHDL output from the same test case.

Start Activation Allowed Test ****

6000 ms in-top-gear = T
6000 ms current-speed = 30.0
6000 ms engine-running = T
6000 ms activate = T
6250 ms Voltage = 0.2.
6250 ms activate = NIL
7250 ms Voltage = 1.0.
8250 ms Voltage = 1.8.
9250 ms Voltage = 2.6.
10250 ms Voltage = 3.3999999.
11250 ms Voltage = 4.0.
11250 ms current-speed = 29.0
12250 ms Voltage = 4.8.
13250 ms Voltage = 5.6000004.
14250 ms Voltage = 6.0.
Shut-Off Complete
14750 ms Voltage = 0.0.
Stop Activation Allowed Test ****

Figure 69. Reacto Cruise Control Activation Allowed Test

When we compare the Reacto and VHDL cruise control simulation output, we see

that the Reacto and VHDL state machines behave the same under the same stimulus

conditions. Up until the current speed event (11250 ms in Reacto, and 16000 ms in the

VHDL simulation) the tests and results are equivalent. Because we change the speed input

at different times in the simulations, the remaining events also occur at different times,

but the values of the cruise control outputs are equivalent. After 14250 ms in the Reacto

simulation and 27000 ms in the VHDL simulation there are some additional differences

in the output because the Reacto Shut-Off function and the VHDL Shut-Off procedure

(see Volume II) we augment the simulations with are different. The VHDL procedure

'Lines containing "Go..." are removed.

130

Start Activation Allowed Test ****

6000 MS InTopGear : TRUE
6000 MS Current-Speed : 30.00
6000 MS Engine-Running : TRUE
6000 MS Activate : TRUE
6250 MS Actuator-Voltage : Event 0.20
7000 MS Activate : FALSE
7250 MS Actuator-Voltage : Event 1.00
8250 MS Actuator-Voltage : Event 1.80
9250 MS Actuator-Voltage : Event 2.60

10250 MS Actuator-Voltage : Event 3.40
11250 MS Actuator-Voltage : Event 4.00
16000 MS Current-Speed : 29.00
17000 MS Actuator-Voltage : Event 4.80
18000 MS Actuator.Voltage : Event 5.60
19000 MS Actuator-Voltage : Event 6.00
27000 MS InTopGear : FALSE
27000 MS Braking : TRUE
27000 MS Deactivate : TRUE
27000 MS Stop-Acceleration : TRUE
27000 MS Current-Speed : 0.00
27000 MS Engine-Running : FALSE
27500 MS Actuator.Voltage : Event 0.00
28000 MS Braking : FALSE
28000 MS Deactivate : FALSE
28000 MS Stop-Acceleration : FALSE

Stop Activation Allowed Test ****

Figure 70. VHDL Cruise Control Activation Allowed Test

131

operates independently of the state machine, and generates a sequence of events which

take the cruise control to the off state and prepare it for the next input sequence. The

Reacto Shut-Off function operates in-step with the state machine and cannot generate a

sequence of events, therefore the tester must generate the remaining events in the shut

off/preparation sequence.

There is another consistent difference between the simulations in general, and that

involves asynchronous events. Both Reacto and VHDL test cases include the asynchronous

event tests, but the events are actually synchronized with transitions in the Reacto model

because we do not implement asynchronous event handling in Reacto.

The test cases for the Reacto and VHDL Lift state machine are similar, but because

we create the motor entity in VHDL to simulate the floor-sensor input for us based on

the motor-control signal, the test output from the two is different. It is much simpler to

let the motor process update the floor-sensor input than to manipulate the Reacto input

stream. We do not change the Reacto input file correspondingly for the sake of identical

simulation output.

Since we cannot connect Schedule-Lifts and Lifts together in Reacto, we test Schedule-

Lifts separately. In VHDL, we do not test Schedule-Lifts separately. Instead, we connect it

to four Lifts, saving us the time and trouble of generating manual Lift output to Schedule-

Lifts input data.

These changes save considerable time, but they make it difficult to do a line-for-line

comparison between the Reacto and VHDL simulations.

7.2 Reacto Benefits and Limitations

Reacto benefits include:

"* High Level Abstractions

"* Incremental Compilation

"* Graphical State Machine Language

"* Reacto Verifier

132

e Automated Transformation Capability

Reacto provides high level abstractions leading to easy and intuitive hierarchical

state machine specifications. For example, while creating the Lift R-Spec, we discover that

the Lift needs to switch its direction on arrival at the top and bottom floors and when

no destinations exist beyond the current location in the current direction and there are

destinations in the other direction. It is a simple matter to update the Lift's Calc-Direction

function to accommodate the change because of Refine's set quantification and set builder

notation. Then we quickly recompile only the Calc-Direction function and reexamine the

behavior.

The Lift problem in particular is full of special cases which must be addressed. For

example, what if an idle Lift is summoned to a floor, but no one pushes a destination

button in the summons direction? Should the Lift simply wait until a button in the

correct direction is pressed? We specify that the Lift waits for Timeout time, and then

recalculates direction. Because of Reacto's simulation capability and powerful abstractions,

we discover and handle this and many other special cases quickly and easily.

Reacto graphical state machine language makes it easier for users to understand the

R-Spec. Automating the visual simulation helps during manual simulations, but is slow

when simulating from a script file.

Reacto's verifier provides some assurance that the specification says what we want

it to say. Operating the verifier is not trivial, and we estimate that another thesis could

be written investigating its use to verify our R-Specs.

Combining Reacto's state machine language with our time-modeling augmentations

allows us to organize and efficiently maintain real-time SRS information. Because Reacto is

implemented in Refine, Refine uses the Reacto grammar to verify the syntax and perform

simple semantic checks of our R-Spec SRS, allowing us to confidently transform the R-

Spec to VHDL. If we implement the automated transformation function, we can generate

VHDL code directly from Refine's knowledge base without having to generate our own

lexical analyzer or compiler for some other formal specification language.

Reacto limitations include:

133

"* Unfamiliar Syntax

"* Asynchronous Event Restriction

"* No Concurrency

"* Knowledge Base Conflicts

Although users may understand the visual FSM, a background in set theory, and

boolean logic, and exposure to Refine syntax is necessary to understand the Reacto code.

Although Section 4.1.3 discusses options for removing the asynchronous event re-

striction in Reacto, our current implementations of get-input and the system clock allow

us to model only synchronous events.

The current version of Reacto does not allow us to model Concurrent States. This

restricts us to specifying pieces of large systems as separate R-Specs (for example the lift

controller as FSMs Lift and Schedule-Lifts), and introduces problems because we cannot

simulate these separate R-Specs together until after the transformation to VHDL. Addi-

tionally, even in smaller FSMs like Lift and Schedule-Lifts, we are not able to resolve all

transition dependencies, simply pointing out those which require or some other implemen-

tation.

Currently, we are not able to work on both the Lift and Schedule-Lifts V-Specs during

the same Reacto session. Both FSMs have On and Off states, and they cannot both be

loaded in the knowledge base simultaneously, let alone simulated together. This forces us

to kill and restart Reacto to work on one and then the other.

7.3 VHDL Benefits and Limitations

VHDL benefits include:

"* Concurrency

"* Event driven Simulation

"* No Asynchronous Event Restriction

"* Alternate Behavioral Specification

134

Concurrency is perhaps VHDL's biggest benefit. Concurrency enables us to simulate

multiple V-Specs and other entities simultaneously, greatly increasing simulation power.

Second comes Event driven simulation. VHDL's rich set of operators for expressing time

(like signal'last-event) are products of the event driven simulation. Because of concurrency

and the event driven simulations, we are able to define the PEM and inject and study

asynchronous events.

Another VHDL benefit is the ability to use something besides a FSM to specify

behavior. We specify behavior without a FSM for our motorized lift rather than pro-

vide manual input saving a great deal of time and effort when simulating multiple lifts

simultaneously.

VHDL limitations include:

* Unfamiliar Syntax

* Lack of High Level Abstractions

* Missing Operators

* Strong Typing

Like Reacto, VHDL syntax is not easily understood by inexperienced users. Some

exposure and training is necessary to understand it.

Considerable time and effort is required to adapt higher level Reacto abstractions

like sets and quantification to VHDL. Similarly, creating operators like Implies and Min

complicates the process. Although we could study the Reacto, Refine, and Lisp operations

in more detail to guarantee that our implementations function exactly as they do in Reacto,

we cannot guarantee that our current implementations do (for example, see Implies in

Section 5.4).

VHDL's strong typing causes us problems when transforming from Reacto to VHDL

as discussed in Section 5.8.

135

7.4 Conclusion

In this chapter we discuss the differences in Reacto and VHDL results because of

the differences in the languages and simulators. Table 5 summarizes Reacto benefits and

limitations, and Table 6 summarizes VHDL benefits and limitations.

Table 5. Reacto Benefits and Limitations

Benefits Limitations
High Level Abstractions Unfamiliar Syntax
Incremental Compilation Asynchronous Event Restriction
Graphical State Machine Language No Concurrency
Reacto Verifier Knowledge Base Conflicts
Automated Transformation Capability

Table 6. VHDL Benefits and Limitations

Benefits Limitations

s Concurrency Unfamiliar Syntax
Event driven Simulation Lack of High Level Abstractions
No Asynchronous Event Restriction Missing Operators

Alternate Behavioral Specification Strong Typing

Together, the two languages fulfill the following requirements for requirements spec-
ification languages we identified in Chapter II:

Abstract the real world well. The Reacto abstractions like sets and quantification ai-
low us to model the lift problem without specifying implementation details like set

size limits or set algorithms. Our Reacto augmentations and the VHDL language

allow us to model time in an abstract way.

Clearly understood by specifier, implementer, and user. Although the Reacto

and VHDL language details require some training and experience to understand,

Reacto's graphical state machine provides intuitive understanding of the specifica-

tion in general.

136

Support verification that the specification and implementation are equivalent.

In addition to execution of the R-Spec and V-Spec test cases. Reacto's verifier

promises to be a powerful verification tool.

Easy to modify and manipulate. We assert based on our experience over the last few

months that both Reacto and VHDL specifications are relatively easy to modify and

manipulate. With the addition of an automatic transformation capability, this can

only be easier.

Allow tracing of requirements. Our Reacto augmentations provide a means to orga-

nize and manage real-time constraint requirements. Reacto's FSM formalism works

like a filing cabinet, allowing us to logically organize virtually all requirements.

Executable specifications. Obviously, both R-Specs and V-Specs are executable.

Support specification of concurrency. Reacto allows specification of concurrency us-

ing multiple FSMs; however, it currently does not allow concurrent simulation of

FSMs. VHDL on the other hand, allows concurrent simulation of multiple FSMs

and other entities as well. Although Reacto currently does not allow specification of

concurrent states, we can extend the V-Spec to model them.

Support specification of timing constraints. Using our Reacto augmentations, we

can specify stimulus-response and response-response timing constraints in Reacto

and VHDL. Our Reacto methodology supports investigating them at a high level,

but after transformation to VHDL, we can examine time dependent behavior and

timing constraints in detail.

137

VIII. Conclusions and Recommendations

8.1 Summary

Our problem statement says that we will investigate the feasibility, benefits, and

problems associated with formalizing, validating and verifying real-time SRSs using Reacto

and the Very High Speed Integrated Circuit (VHSIC) Hardware Description Language

(VHDL). Additionally, this requires defining a mapping and translation from Reacto to

VHDL.

Our original specific objectives were:

1. Define a means to map time constraints into Reacto.

2. Define a means to validate time constraints in Reacto.

3. Specify a transformation from Reacto to VHDL.

4. Specify, verify, simulate, and validate the behavior of a both a cruise control and lift
system in Reacto and VHDL.

5. Compare Peacto and VHDL capabilities.

6. Recommend enhancements to Reacto and VHDL.

We have:

1. Added time and timing constraints to Reacto specifications.

2. Formalized cruise control and lift controller SRSs.

3. Validated and verified behavior and timing constraints of the cruise control and the
lift controller in Reacto via executable simulations.

4. Defined a behavior preserving mapping between Reacto and VHDL FSMs, especially
for the cruise-control, lift, and schedule-lifts R-Specs, and manually transformed the
three R-Specs to V-Specs.

5. Validated and verified behavior and timing constraints of three state machine speci-
fications in VHDL making significant improvements in the specifications.

6. Defined a Preemptive Execution Model for VHDL FSMs.

7. Discovered the effects of asynchronous events on the cruise-control, lift, and schedule-
lifts behavior in VHDL.

138

8. Discovered dependencies in concurrently operating Lift and Schedule-Lifts VHDL
state machines.

9. Demonstrated the flexibility of the Lift problem decomposition and our methodology
by expanding the Lift and Schedule-Lifts simulation to 9 Lifts and 20 floors.

We have met our objectives. We don't claim to have found all possible dependencies

in the Cruise and Lift problems, but only in two respects did we hope to do more. One,

we hoped to effectively use the Reacto Verifier to prove our R-Spec consistency. The ver-

ifier is complicated, and we do not understand its use well enough to write the necessary

lemma files to support the verifier. Two, at one point we hoped to provide an automated

transformation from Reacto to VHDL. Because of the differences in the Reacto and VHDL

languages, defining the target VHDL FSM that models the R-Spec FSM behavior cor-

rectly took a great deal of time, but now that it is almost completely defined, creating an

automated transformation should be easier.

We have gained a means to formally specify real-time systems, including time con-

straints as state machines, and verify and validate their behavior. Our methodology may

point out dependencies that may not be evident or even a problem with some other speci-

fication method, but it does give a framework to expose and evaluate dependencies leading

to a clearer specification and better solution than we could have reached without a method

at all. Expanding the methodology to allow concurrent states could enable a developer to

try out different implementations, leading to a successful solution.

Specification of concurrency cannot and should not be avoided in all cases. We

believe it is beneficial to start out with a sequential specification. This allows us to discover

the dependencies and annotate them without introducing unnecessary concurrency. This

provides the most flexibility to the developer. We assert that it is beneficial to break the lift

problem down into two concurrently operating FSMs- e.g., more than one Lift. Within

those FSMs, more concurrent behavior could be specified, but we avoid it to stay out of

the realm of implementation. Deciding when to specify concurrency must depend on the

problem and the objectives.

Concurrency allows us to break our problem down into a collection of state machines

and simulate their behavior simultaneously. Concurrency within a single state machine

139

could be provided by orthogonal states, or by creating two separate state machines op-

erating independently. In the case of the Schedule-Lifts example, the two transitions

Summons-Button-Event and Status-Event are dependent, and no sequential solution ex-

cept combining them into a single transition could eliminate the dependency; that solution

is an implementation resolving the natural dependency, no longer a specification. The ca-

pability to specify concurrent states would allow us to investigate the problems associated

with that solution before building the concurrent implementation. It would also allow the

specification to archive the decision to implement concurrency. We have not provided a

simple solution to determine when to specify concurrency, and when not to. However, since

there are times when concurrency should be specified, the model should accommodate it.

8.2 Recommendations

8.2.1 Reacto Enhancements Allen and Ladkin have defined relations on time in-

tervals (2) (24). Adding the ability to represent time intervals and reason about them in

Reacto may be more powerful than the method we have used to specify, verify and validate

temporal behavior. Although we intended to use such a formalism to specify behavior as

a function of time, it proved to be more than we could accomplish in this masters thesis.

We assert that it is worth investigating further, perhaps even augmenting Reacto's verifier

to reason about time intervals.

We don't claim to have found all possible dependencies in the Cruise and Lift prob-

lems, and we note many detailed test cases could be necessary to fully examine large

systems. We hope that expanding Reacto's verification engine to examine transition de-

pendencies and time constraints could eliminate or reduce this burden.

A graphical means to specify the R-Spec FSM's interface to the outside world could

be a plus. Something along the lines of an SADT diagram would be beneficial. Perhaps

an Intervista windows application could be developed to generate the auxiliary file inputs

and outputs for the R-Spec.

140

Using VHDL attributes like s'last-event, s'last-value, and s'transaction enable us to

detect constraint violations in VHDL. Creating attributes for interface variables to support

these functions could enhance Reacto's ability to simulate and verify timing constraints.

Similarly, if time becomes an inherent part of Reacto, adding a delay attribute to

transitions is important. Also, time constraints could be modeled as attributes of the state

object, similar to its own-vars attribute. Unless time is implemented as an inherent part

of Reacto, it will be difficult to manage. For example, if concurrent states are allowed, how

will we solve the problem of updating a global clock when two transitions are executing

simultaneously- which value will the clock take on?

We don't currently provide a graphical representation of the timing constraints, al-

though one could label each transition with a delay and show any timers associated with

states.

Implementing the automated transformation is a significant task, but even a limited

transformation could improve the methodology.

8.2.2 VHDL Enhancements Provide a more general set theoretical data type and

set theoretical operations. VHDL text input and output is very cumbersome, it needs

better input/output facilities.

Currently, our VHDL FSM is no more concurrent than the Reacto FSM is. If the

Reacto model eventually supports orthogonal states, the VHDL machine must be changed

to a set of concurrently running processes, one for each orthogonal sub state. This in-

volves using the local signals to communicate between the state machines, and arbitration

functions any time two or more states output the same information. The behavior of

the resolution function must mimic the resolution defined in Reacto for their state ma-

chines when concurrency is implemented. Implementing a monitor in VHDL could help

accomplish this.

141

8.3 Lessons Learned

8.3.1 Reacto Reacto is a very promising tool; its high level abstractions and theo-

rem prover make it unique and powerful. But, Reacto is a new language/tool, not yet fully

debugged or user friendly. Since no one here worked with Reacto previously, we learned

things the hard way- by trial and error. We hope that those who come after us benefit

from our experience, and we note that fixes to many of the following problems are already

being implemented at Kestrel Institute.

Changing information that appears in both the graphics windows and in the spec

file, like the name of a transition, are best made from the graphics window. First, make

a backup spec file copy, then make the changes graphically. Next, save the graphics and

the spec from the graphics menu, and then manually update the backup spec file with the

changes reflected in the updated one. Finally, copy your manually edited version back over

the saved spec. This preserves your comments, capitalization and indentation.

Making changes to the state and transition attributes which are reflected in the spec

files requires the input of lisp expressions to the graphical editor. It is far easier to change

them in the source file via Emacs, and reload it.

The error message: "error: attempt to call re:*undefined*" which sometimes occurs

during simulations is a result of inconsistencies between the graphics and the spec files.

The best solution is to copy spec/aux files to a safe place, delete the spec, reinput the

graphics, copy the saved copy of the spec/aux files back, and update them with the new

transition numbers.

In order to create a new spec by copying an existing spec and adding a prefix to

the names, make sure file names include the full name of the highest level state. For

example, if cruise-control is your state, the filenames should be cruise-control-spec.re and

cruise-control-auxiliary.re or Reacto's copy existing spec option fails.

When you save the spec files from the graphics menu, it saves a pretty-printed copy

of the spec from the knowledge base. Since there are no comments in the knowledge base,

there are no con ,.its in the new spec file.

142

Occasionally changes made to the source files are not reflected in the knowledge base.

If for example, you change the name of a function and recompile, the old function remains

in the knowledge base until Refine is killed and restarted. Hence, your system may behave

differently, or not work at all after Refine is killed and restarted. Take care, especially

when changing or deleting names.

Run under Xwindows NOT Openwindows. Many problems stem from the Intervista

interface which Reacto uses for its graphical interface. Examples include extra windows

popping up, and lost input in graphics and graphics-editor modes.

Use Emacs as opposed to another editor, it saves you time in the long run, and

keeps you from overwriting files with two editors running. Keep backup files! Use Emacs

replace-regular-expression to search and replace dashes in R-Spec files to underscores in

V-Spec files.

It is difficult to create aesthetically pleasing state charts automatically in Reacto.

The initial positioning of the transition arrows and labels is not done manually, and you

may want to rearrange them. To redraw a transition manually requires focusing on the

transition first to avoid mouse-handler errors.

We discovered a couple of problems with version incompatibility between Reacto

and Intervista upgrades, but Kestrel Institute's Li-Mei Gilham resolved them quickly and

courteously by e-mail. She is very responsive and professional. Her e-mail address is

"wu~kestrel.edu".

8.3.2 VHDL VHDL has proven its utility to hardware engineers who use it daily

to specify and simulate their systems without going to the expense of building them.

We believe it has great potential to do the same for software engineers, especially for

real-time systems. Unlike with Reacto, we have the benefit of previous experience with

VHDL. VHDL has been around for years, and consequently it is more mature than Reacto.

Nevertheless, we pass on some lessons learned.

When VHDL signals are included in a process sensitivity list, inertial signal as-

signments of the current signal value to those signals is treated like a transport assign-

ment. This results in extra transitions during VHDL simulations because high priority

143

Current-State signal assignments cannot preempt low priority Current-State signal assign-

ments when the next state for both transitions is the same. We added an extra enumeral

Dummy to the Current state declaration:

type State-Type is (Off, Cruise, Accelerating, Idle, Dummy);

and changed the last line of the Cleanup procedure to:

Current-State <= Dummy after D;
Current-State <= Next-State after D;

effectively clearing the Current-State signal driver queue.

VHDL allows users to specify each piece of a system in separate files. For example,

one file may contain the entity declaration, another the architecture, and a third file, the

configuration. We find it much easier to keep track of changes to these pieces by keeping

them in a single fie. This also results in far fewer files, and fewer compilation dependency

problems.

VHDL allows us to configure the entire Test System (TS) in a single configuration,

but for large systems, this can cause the analyzer to abort because of some size limit. It

uses less space to configure each piece separately, and combine these smaller configurations

together to create the test system. For example, creating the Motorized-Lift configuration,

and using it instead of configuring several lifts and motors together in a TS takes much

less space, and is simpler to read.

144

Appendix A. Cruise Control Test Cases

A.1 Initialization Test

Initially, the cruise control shall be in an off state. Therefore, upon startup, throttle
actuator voltage shall be zero until speed is greater than 30 miles per hour and the driver
command activate is asserted. Test steps:

1. Set In-Top-Gear, Engine-Running to true

2. Set Braking to false

3. Set Speed to 0 mph

4. Is Actuator-Voltage 0.0 volts?

A.-2 Activation Denied Test

There are three phases to this test. The first phase tests that the system shall not
activate when the car is in top gear, the engine is running, but the speed is not 30 mph or
more. The second phase tests that the system shall not activate when the car's speed is
30 mph or more, the transmission is in top gear, but the engine isn't running. The final
phase tests that the system shall not activate when the cars speed is 30 mph or more, the
engine is running, but the transmission isn't in top gear. Requirements Tested: R1, R2,
R3. Test steps:

1. Set In-Top-Gear, Engine-Running to true

2. Set Braking to false

3. Set Speed to 29 mph

4. Toggle Activate between true and false

5. Is Actuator-Voltage 0.0 volts?

6. Set Speed to 30 mph

7. Set Engine-Running to false

8. Toggle Activate between true and false

9. Is Actuator-Voltage 0.0 volts?

10. Set Engine-Running to true

11. Set In-Top-Gear to false

12. Toggle Activate between true and false

13. Is Actuator-Voltage 0.0 volts?

145

A.3 Activation Allowed Test

This tests that the cruise control shall activate when the engine is running, the
transmission is in top gear, and the speed is at least 30 mph. Requirements Tested: R1,
R2, R3, C4. Test steps:

1. Set In-Top-Gear, Engine-Running to true

2. Set Braking to false

3. Set Speed to 30 mph

4. Toggle Activate between true and false

5. Set Speed to 29 mph

6. Is Actuator-Voltage greater than 0.0 volts?

A.4 Deactivation Test

This tests that the cruise control shall shut off when the driver presses deactivate.
Requirements tested: R1, R4. Test steps:

1. Set In-Top-Gear, Engine-Running to true

2. Set Braking to false

3. Set Speed to 30 mph

4. Toggle Activate between true and false

5. Set Start-Accelerating to true

6. Set Deactivate to true

7. Is Actuator-Voltage = 0.0 volts?

A.5 Acceleration Test

This tests that the cruise control shall accelerate the car when the driver presses Start-
Accelerating, and that it stops accelerating when the driver presses Stop-Accelerating. It
also tests that the acceleration shall be approximately lmph/sec. Requirements Tested:
R5, C1, C4, C5, C6, C7, C8. Test steps:

1. Set In-Top-Gear, Engine-Running to true

2. Set Braking to false

3. Set Speed to 30 mph

4. Set Acceleration to 1.0

5. Toggle Activate between true and false

6. Toggle Start-Accelerating between true and false

7. Is Actuator-Voltage greater than 0.0 volts?

146

8. Increase Acceleration by 1 mph/sec

9. Is Actuator-Voltage constant?

10. Increase Acceleration by 1.2 mph/sec

11. Is Actuator-Voltage 0.0?

12. Increase Acceleration by 0.8 mph/sec

13. Is Actuator-Voltage 8.0?

14. Toggle Stop-Accelerating between true and false

15. Leave Acceleration constant

16. Is Actuator-Voltage greater than 0.0 volts and constant?

A.6 Resume Test

This tests that the cruise control shall resume the previous speed when the driver
presses Resume after Braking or not In-Top-Gear. Requirements Tested: R6, R8, R10,
R11, R12, C4. Test steps:

1. Set In-Top-Gear, Engine-Running to true

2. Set Braking to false

3. Set Speed to 30 mph

4. Toggle Activate between true and false

5. Is Actuator-Voltage greater than 0.0 volts?

6. Set Braking to true

7. Is Actuator-Voltage = 0.0 volts?

8. Set Braking to false

9. Toggle Resume between true and false

10. Is Actuator-Voltage = previous voltage?

11. Set In-Top-Gear to false

12. Is Actuator-Voltage = 0.0 volts?

13. Set In-Top-Gear to true

14. Toggle Resume between true and false

15. Is Actuator-Voltage = previous voltage?

16. Toggle Deactivate between true and false

17. Toggle Resume between true and false

18. Is Actuator-Voltage = 0.0 volts?

147

A. 7 Downhill Test

This tests that the cruise control shall attempt to maintain the selected speed by
decreasing actuator voltage to minimum when the current speed remains more than 2 mph
above the selected speed. Requirements Tested: C2, C4. Test steps:

1. Set In-Top-Gear, Engine-Running to true

2. Set Braking to false

3. Set Speed to 45 mph

4. Toggle Activate between true and false

5. Is Actuator-Voltage greater than 0.0 volts?

6. Gradually increase speed to 50 mph

7. does Actuator-Voltage gradually decrease to 0.0 volts?

A.8 Uphill Test

This tests that the cruise control shall attempt to maintain the selected speed by
increasing actuator voltage to maximum when the current speed remains more than 2
mph below the selected speed. Requirements Tested: C3, C4. Test steps:

1. Set In-Top-Gear, Engine-Running to true

2. Set Braking to false

3. Set Speed to 45 mph

4. Toggle Activate between true and false

5. Is Actuator-Voltage greater than 0.0 volts?

6. Gradually decrease speed to 40 mph

7. does Actuator-Voltage gradually increase to 8.0 volts?

A.9 Breaking During Activate Delay Test

This test is an asynchronous event test, meant for use with VHDL, and explicitly
designed to expose timing dependencies between the Startup and Not-Enabled transitions.
It models the situation where the driver activates the cruise control, and less than 250 ms
later puts on the brakes. We expect the cruise control to output 0 volts within 500 ms of
the braking event. Test steps:

1. Set In-Top-Gear, Engine-Running to true

2. Set Braking to false

3. Set Speed to 45 mph

4. Set Activate true

5. Set Braking true 100 ms after Activate

6. Is Actuator-Voltage 0.0 volts within 500 ins of braking?

148

A.10 Breaking During Activate Asserted Test

This test is an asynchronous event test, meant for use with VHDL, and explicitly
designed to expose timing dependencies between the Startup and Not-Enabled transitions.
It is similar to the Breaking During Activate Delay Test, except for the fact that the
braking event occurs more than 250 ms after the activate event, while activate is still
asserted. We expect the cruise control to turn off within 500 ms of the braking event. Test
steps:

1. Set In-Top-Gear, Engine-Running to true

2. Set Braking to false

3. Set Speed to 45 mph

4. Set Activate true

5. Set Braking true 450 ms after Activate

6. Is Actuator-Voltage 0.0 volts within 500 ms of braking?

A. 11 Breaking After Activate B4 Cruise Test

This test is an asynchronous event test, meant for use with VHDL, and explicitly
designed to expose timing dependencies between the Startup and Not-Enabled transitions.
Similar to the two previous test cases, this test case examines the behavior of the cruise
control when the driver presses and releases the activate button very quickly and puts on
the brakes within 250 ms of pushing the activate button. Again, we expect the cruise
control to output zero volts within 500 ms of the braking event. Test steps:

1. Set In-Top-Gear, Engine-Running to true

2. Set Braking to false

3. Set Speed to 45 mph

4. Set Activate true, then false after 150 ms

5. Set Braking true 175 ms after Activate is true

6. Is Actuator-Voltage 0.0 volts within 500 ms of braking?

A.12 Resume During Breaking Test

This test is an asynchronous event test, meant for use with VHDL, and explicitly de-
signed to expose timing dependencies between the Resume-And-Enabled and Not-Enabled
transitions. It models the situation where the driver activates the cruise control, puts on
the brakes after the cruise control activates, and while the brakes are pressed, pushes the
resume button, releasing the resume button and the brakes simultaneously. We expect the
cruise control to continue outputting zero volts within 500 ms of the braking event even
though the resume button is pressed. Test steps:

1. Set In-Top-Gear, Engine-Running to true

149

2. Set Braking to false

3. Set Speed to 45 mph

4. Set Activate true, then false after 150 ms

5. Set Braking true 1750 ms after Activate is true

6. Set Resume true 2505 ms after Activate is true

7. Is Actuator-Voltage 0.0 volts within 500 ms of braking?

A.13 Deactivate Overlaps Resume Test

This test is an asynchronous event test, meant for use with VHDL, and explic-
itly designed to expose timing dependencies between the Shutdown , Not-Enabled, and
Resume-And-Enabled transitions. It models the situation where the driver activates the
cruise control, subsequently deactivates it, and while the deactivate button is pressed and
before the cruise control actually shuts down, also pushes the resume button, keeping it
pressed until after the deactivate button is released. We expect the cruise control to con-
tinue outputting zero volts within 500 ms of the deactivate event even though the resume
button is pressed. Test steps:

1. Set In-Top-Gear, Engine-Running to true

2. Set Braking to false

3. Set Speed to 45 mph

4. Set Activate true, then false after 455 ms

5. Set Deactivate true 1750 ms after Activate is true, false after 2200 ms

6. Set Resume true 1800 ms after Activate is true, false after 3009 ms

7. Is Actuator-Voltage 0.0 volts within 500 ms of Deactivate?

150

Appendix B. Lift Controller Test Cases

B.1 Lift Test Cases

B. 1.1 All Summons Test This test tests lift's ability to handle all Summons from
every floor. In the real world, this corresponds to people simultaneously pushing every
summons button on every floor requesting the elevator pick them up. Lift shall stay on the
first floor until the (1 UP) Summons is removed from Summons and Outstanding Requests,
then go up, stop at eacn floor, wait until the up Summons for that floor is removed from
Summons and Outstanding Requests, until it reaches the top floor. From the top floor the
lift shall go down, stop at each floor until it reaches the second floor, where it goes Idle
after (2, DN) is removed from Summons and Outstanding Requests.

B.1.2 All Destinations Test This test tests lift's ability to handle people inside
the lift simultaneously pushing all destination buttons. The lift shall initially turn on all
destination lights, and since it is already at the second floor, the lift shall subsequently
turn off the second floor light. Since it was going down when it stopped last, it shall
continue to go down, stop at the first floor, and extinguish destination light one. Before it
gets to the first floor, a passenger pushes the second floor destination button, and now the
lift shall turn on destination light number 2. At the first floor, it shall reverse direction,
go up, stop at each floor, and extinguish the destination light for each floor as it arrives.
After leaving the second floor another passenger pushes the second floor button, and the
lift shall turn on floor 2's destination light. The lift shall continue to the top floor, and
return to the second floor without stopping at the third floor, extinguish destination light
2, and go Idle.

B.1.3 Emergency Button Test This test tests lift's response to emergency button
events. Initially, we push the emergency button while the lift is Idle, to see if it goes
to the Off state. Then we release the emergency button, and the lift shall return to the
Idle state. Next we push the emergency button again, and after the lift goes to the Off
state, we push destination button 4. Lift shall turn on destination light 4, since we specify
that it schedules destinations even while stopped for an emergency. When we release the
emergency button, the lift shall start moving toward the fourth floor. While the lift is
between floors, we push the emergency button again, and lift shall not stop until it reaches
a floor, and it shall stop upon reaching any floor whether it is in the schedule or not. When
we release the emergency button after the lift stops, it shall resume moving, stop when it
gets to the 4th floor, extinguish the 4th floor destination light, and go Idle.

B.1.4 Mixed Destinations and Summons Test This test tests lifts ability to handle
both summons requests and destination requests together. First, we summon lift to take
us down from the second floor. Since it is at the fourth floor, lift shall start moving
down, and stop at the second floor and go Idle after (2 DOWN) is removed from Summons
and Outstanding-Requests. After the lift arrives at the second floor, we press destination
button 1, and the lift shall turn on destination light 1, and move down to the first floor.
Before the lift arrives at the first floor, we input a summons request (3 DOWN). The lift

151

shall continue moving to the first floor, stop, reverse direction and head for the third floor.
After the lift leaves the first floor, and before it gets to the second floor, we input another
summons request for (2 UP). The lift shall stop at the second floor, wait until (2 UP)
is removed from Summons and Outstanding-Requests, move to the third floor, and wait
until (3 DOWN) is removed from Summons and Outstanding-Requests. Now, we press
destination button 1, and the lift shall turn on destination light 1, take us to the first floor,
stop and go Idle.

B.1.5 Timeout lest Timeout tests the lift against the response-response constraint
which specifies the amount of time the lift waits for a destination in the current direction
if there are no destinations already in that direction. It tasks the lift to satisfy both up
and down summons from third floor. But no one gets on to push destination requests. Lift
should satisfy the up summons first, timeout, satisfy the down summons, then go idle.

B.2 Schedule Lifts Test Cases

B.2.1 Off State Test This test tests schedule lifts behavior when all lifts are off.
The scheduler should transition to the Off state and ignore destination button requests
until at least one lift is restored.

B.2.2 All Summons 1 Lift Test This test tests schedule lifts behavior when only
one lift is available to handle summons requests from all floors in all directions. Lift 2 is
the only active lift, it should be Lasked to handle all summons. As it cycles visiting all
floors in all directions, summons should be removed from outstanding requests as floors
are visited. Finally, outstanding requests should be nil.

B.2.3 Idle Schedule Test This test tests schedule lifts behavior when all elevators
are available, and only one is idle. It should task the one lift with every summons unless
there is an elevator at the correct fl 'or going the right way.

B.2.4 All Summons Test This test tests schedule lifts behavior when all lifts axe
available to handle summons requests from all floors in all directions. Schedule lifts should
distribute the summons requests to lifts fairly, depending on all lift status information.

152

Appendix C. Reacto Input and Output

C. 1 Input

Reacto Interface Variables provide a way for the R-Spec to communicate to the

R-Spec from the external environment (23:7). Users define Interface Variables in R-Spec

auxiliary files during Developer editing sessions. Interface variables have the following user

defined attributes:

9 name

e interface-var-base-type

e buffered?

e producer-function

The interface variable name attribute is used to refer to the interface variable in the

R-Spec (23:7).

The interface-var-base-type attribute defines the type of the interface variable (23:7).

It may be any Refine predefined data type or user defined type.

The interface variable buffered? attribute is a boolean flag. If buffered? is true, the

interface variable acts like a queue'. Actually, a buffered interface variable is a sequence of

type interface-var-base-type. If buffered? is false, the interface variable is not a sequence,

only a sing' 3 element of type interface-var-base-type (23:7).

The producer-function attribute specifies the name of a producer function for the

interface variable. Producer functions have no parameters, and they must return a value

of type interface-vat-base-type (23:7).

There are three predefined interface variables, *keyboard-input*, *file-input*, and

keyboard-char-input. Each predefined interface variable has a predefined producer func-

tion. FSMs use *keyboard-input* and *file-input* to read lisp objects from the keyboard

'External sources write to the tail of the queue, the R-Spec FSM reads from the head of the queue

153

and input files via the Refine compiler. The *keyboard-char-input* provides a way to read

a single character from the system keyboard (23:8).

Reacto has four system defined functions which R-Spec FSMs use to access interface

variables.

"* empty-interface-variable?

"* clear-interface-variable

"* examine-interface- variable

" read-interface-variable

The empty-interface-variable? function is a boolean function that returns true when

the interface variable is undefined or the null sequence (23:9).

The clear-interface-variable function sets unbuffered interface variables to undefined

and removes one element from the head of a buffered interface variable queue. Calling clear-

interface-variable when the interface variable is undefined or the null sequence generates

an error (23:9).

The examine-interface-variable function returns the value of unbuffered interface vari-

ables or the value of the first element of buffered interface variables. When the interface

variable is undefined or the null sequence, Reacto calls the interface variable's producer

function and returns the new value. Calling examine-interface-variable on interface vari-

ables without a producer function when the interface variable is undefined or the null

sequence generates an error (23:9).

Calling read-interface-variable function is like calling examine-interface-variable and

clear-interface-variable one after the other (23:9).

Clear-interface-variable and read-interface-variable can only be called from transition

actions, while empty-interface-variable? and examine-interface-variable may also be used

in state assertions and transition predicates (23:9).

154

C.2 Output

The Reacto predefined function update-screen provides users a way to write string

output to a 26 line by 40 character window during simulations. Users control output format

by passing cursor coordinates to update-screen (23:9).

155

Bibliography

1. Alagar, V.S. and G. Ramanathan. "Functional Specification and Proof of Correctness
for Time Dependent Behavior of Reactive Systems," Formal Aspects of Computing,
03(3):253-283 (Jul-Sep 1991).

2. Allen, James F. "Maintaining Knowledge about Temporal Intervals," Communica-
tions of the ACM, 26(11):832-843 (November 1983).

3. Allen, James F. "Towards a General Theory of Action and Time," Artificial Intelli-
gence, 23(2):123-154 (July 1984).

4. Bailor, Maj Paul D. "Program Transformation Systems." Class handout for CSCE
595, Software Generation and Maintenance, Winter Quarter 1992.

5. Balzer, Robert and Neil Goldman. "Principles of Good Software Specification and
their Implications for Specification Language," IEEE Conference on Specifications of
Reliable Software, 7(2):58-67 (March 1979).

6. Barton, David L. "A First Course in VHDL," Design Automation Guide, 40-47
(1988).

7. Connor, Michael F. "SADT - Structured Analysis and Design Technique Introduc-
tion." 1980 International Engineering Management Conference Record. 138-143. New
York: IEEE Press, 1980.

8. Dasarathy, B. "Timing Constraints of Real-Time Systems: Constructs for Expressing
Them, Methods of Validating Them," IEEE Transactions on Software Engineering,
11(1):80-86 (January 1985).

9. Davis, Alan M. Software Requirements: Analysis and Specification. Englewood Cliffs
NJ: Prentice Hall, 1990.

10. Douglass, Randall L. Formalization and Validation of an SADT Specification Through
Executable Simulation Using the Refine Specification Environment. MS thesis,
AFIT/GCS/ENG/91D-5, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1991.

11. Drusinsky, Doron and David Harel. "Using Statecharts for Hardware Description and
Synthesis," IEEE Transactions on Computer-Aided Design, 8(7):798-807 (July 1989).

12. Eickmeier, Daniel L. Formalization and Validation of an SADT Specification Through
Executable Simulation in VHDL. MS thesis, AFIT/GCS/ENG/91D-6, School of En-
gineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, De-
cember 1991.

13. Gilham, Li-Mei. "Toward Reliable Reactive Systems." Appeared in Proceedings of the
5th International Workshop on Software Specification and Design, May 1989. 1-8.
Palo Alto, CA: Kestrel Institute, February 1989.

14. Harel, David. "Statecharts: A Visual Formalism for Complex Systems," Science of
Computer Programming, 8:231-274 (1987).

156

15. Harel, David. "On Visual Formalisms," Communications of the ACM, 31(5):514-530

(May 1988).

16. Harel, David et al. "STATEMATE: A Working Environment for the Development of
Complex Reactive Systems," IEEE Transactions on Software Engineering, 16(4):403-
414 (April 1990).

17. Hatley, Derek J. and Imatiaz A. Pirbhai. Strategies For Real-Time System Specifica-
tion. New York: Dorset House Publishing, 1987.

18. Ibrahim, Rosalind L., et al. "Should Concurrency be Specified?." Specification and
Verificaiton of Concurrent Systems. Proceedings BCS-FACS workshop (TR-45). 246-
271. Stirling UK: Stirling, July 1988.

19. IEEE Press, New York. IEEE Standard VHDL Language Reference Manual - IEEE

Std 1076-1987, 1988.

20. Jahanian, Farnam. "Verifying Properties of Systems with Variable Timing Con-
straints." Proceedings, Real Time Systems Symposium(Cat No.89CH2803-5). 319-
328. New York: IEEE Computer Society Press, December 1989.

21. Jahanian, Farnam and Aloysius Ka-Lau Mok. "Safety Analysis of Timing Properties
in Real-Time Systems," IEEE Transactions on Software Engineering, 12(9):890-904
(September 1986).

22. Kestrel Institute. Reacto Verifier User's Guide, 1990. Version 1.0.

23. Kestrel Institute. Reacto Users Manual, 1992. Version 2.0.

24. Ladkin, Peter. "Time Representation: A Taxonomy of Interval Relations." Proceed-
ings of AAAI-86. 360-366. 1986.

25. Levi, Shem-Tov and Ashok K. Agrawala. Real-Time System Design. New York:
McGraw-Hill Book Company, 1990.

26. Lipsett, Roger et al. VHDL: Hardware Description and Design. Boston: Kluwer
Academic Publishers, 1989.

27. March, Stephen G. An Object Oriented Analysis Method for Ada and Embedded Sys-
tems. MS thesis, AFIT/GCS/ENC/89D-1, School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, December 1989.

28. Nejad-Sattary, M. and P.E. Osmon. "A notation for Real-Time System Specification."
Proceedings of the UK IT 1990 Conference. 358-364. London: IEE, March 1990.

29. Pressman, Roger S. Software Engineering: A Practitioner's Approach. New York:
McGraw-Hill Book Company, 1987.

30. Reasoning Systems Inc. Refine User's Guide, 1985. Version 3.0, revised 1990.

31. Ross, Douglas T. "Structured Analysis (SA): A Language for Communicating Ideas,"
IEEE Transactions on Software Engineering, 1:16-34 (January 1977).

32. Ross, Douglas T. "Applications and Extensions of SADT," IEEE Computer,
18(4):25-35 (April 1985).

157

33. Ross, Douglas T. and K. Schoman. "Structured Analysis for Requirements Defini-

tion," IEEE Transactions on Software Engineering, 1:6-15 (January 1977).

34. Smith, Sharon L. and Susan L. Gerhart. "STATEMATE and Cruise Control: A
Case Study." Proceedings of the Twelfth Annual International Computer Software and
Applications Conference (COMPSAC 88). 49-56. New York: IEEE, October 1988.

35. Sommerville, Ian. Software Engineering. Workingham, England: Addison-Wesley,
1989.

36. Spicer, Kelly L. Mapping an Object Oriented Requirements Analysis to a
Design Architecture that Supports Design and Component Reuse. MS thesis,
AFIT/GCS/ENG/90D-13, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1990.

37. Stankovic, John A. "Misconceptions About Real-Time Computing," IEEE Computer,
10:10-19 (October 1988).

38. Tse, T.H. and L. Pong. "An Examination of Requirements Specification Languages,"
The Computer Journal, 34:143-152 (April 1991).

39. Wood, William G. "Temporal Logic Case Study." Lecture Notes in Computer Science,
Automatic Verification Methods for Finite State Systems International Workshop,
Grenoble France, Proceedings. 257-263. Berlin: Springer-Verlag, June 1989.

40. Yourdon, Edward. Modern Structured Analysis. Englewood Cliffs NJ: Prentice-Hall,
1989.

41. Zave, Pamela. "An Insider's Evaluation of PAISLey," IEEE Transactions on Software
Engineering, 17(3):212-225 (March 1991).

42. Zave, Pamela and Daniel Jackson. "Practical Specification Techniques for Control-
Oriented Systems." Proceedings of the IFIP 11th World Computer Congress (Infor-
mation Processing 89). 83-88. New York: North-Holland, September 1989.

43. Zave, Pamela and William Schell. "Salient Features of an Executable Specification
Language and Its Environment," IEEE Transactions on Software Engineering, SE-
12(2):312-326 (February 1986).

158

Vita

Captain Frank Charles Duane Young was born on 22 April 1955 in Choteau, Mon-

tana. He graduated from Choteau High School in 1973 and attended Carroll College,

Helena, Montana from 1973 to 1974. He enlisted in the United States Air force in October

1974. From January 1975 to October 1979 Capt Young worked as an enlisted computer

operator at Air Force Global Weather Central, Offutt AFB, Nebraska. From October 1979

to August 1984, Captain Young was a computer operator and computer systems manager

in the base data processing facility at Malmstrom AFB, Montana. From September 1984

to June 1987, Capt Young attended Montana State University via the Air Force's Air-

man's Education and Commissioning Program. He graduated Magna Cum Laude with a

Bachelors Degree in Computer Science. From July 1987 to October 1987, Captain Young

attended the Air Force Officer Training School; he was commissioned on 1 October 1987.

After a short Technical School assignment at Keesler AFB Mississippi, Captain Young

was the Deputy Chief of Computer Operations in Cheyenne Mountain Complex, Colorado

Springs, Colorado from March 1988 to August 1990. From September 1990 to May 1991,

Captain Young was a Software Engineer and Programmer Analyst on a software develop-

ment project for a new Cheyenne Mountain system. In May 1991, Capt Young entered

the Air Force Institute of Technology in pursuit of a Master of Science degree in Computer

Engineering.

Permanent address: 110 1st Ave. S.W.
Choteau, Mt 59 .22

159

I Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

Punlic reoorti"g ourcei, to, this ccitretion of information is estimated to average o hour Der res=o-se. ,ncuaing the tine to, relewin g nstruictions, searcn-,,' e.,st'ng cata sources,
gathering aric maintaining the data needed, and comoleting and reviewrg the coliecion of information send comments rega-aing this durden estimate Cr an. ;ther asoect of this
collect~on of .ntor.,ation, inciuaing suggestions for reducing this 1uraen tc WVashington Headquarters Services. Drectorate fo- information ODerations O anoaReprts. i2is jefferson
Daws Hsigfa;, Suite 1204. Arington, VA 22202-4302. and to ts. Office of Management and Budget, P4oreworK eAeducton Protect (0704-0188). Wasnhngton 'C- 20503

1. AGENCY USE ONLY (Leave blank) I2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1992 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Formalizing, Validating, And Verifying
Real-Time System Requirements
With Reacto And VHDL

6. AUTHOR(S)

Frank C. D. Young, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER

AFIT/GCS/ENG/92D-24

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)
We develop a methodology for formalizing, verifying, and validating the requirements specification of real-time
systems based on a graphical and formal hierarchical Finite State Machine (FSM) language Reacto. We define
a means to quantify time and express real-time constraints in Reacto and a transformation from Reacto to the
Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL). Reacto's high level ab-
stractions, graphical nature, and theorem prover produce efficient, accurate, and easily understood specifications.
We use VHDL's event driven simulation capability, concurrency, and temporal operators to thoroughly examine
temporal dependencies between the state machine transitions, and to increase simulation power by simulating
multiple communicating FSMs. We apply the methodology to two example problems, a cruise control, and a
lift (elevator) controller. We verify that the state machine specification is consistent and validate the specifica-
tion using executable simulations in both Reacto and VHDL. We evaluate the methodology against criteria for
real-time specification languages and conclude that Reacto and VHDL complement each other well. Together,
they abstract the real world well, are clearly understood, verify that the specification and implementation are
consistent, are easy to modify, allow requirements tracing, and finally, support specification of concurrency and
timing constraints.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Requirements Analysis, Real Time, System Specification, Reacto, 172
VHDL, Software Engineering, Formal Methods 16. PRICE CODE

17. SECURITY CLASSIFICATION I8. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std 139-18
298.102

